Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855376

RESUMO

Frontal motor areas are central to controlling voluntary movements. In non-human primates, the motor areas contain independent, somatotopic, representations of the forelimb (i.e., motor maps). But are the neural codes for actions spatially organized within those forelimb representations? Addressing this question would provide insight into the poorly understood structure-function relationships of the cortical motor system. Here, we tackle the problem using high-resolution optical imaging and motor mapping in motor (M1) and dorsal premotor (PMd) cortex. Two macaque monkeys performed an instructed reach-to-grasp task while cortical activity was recorded with intrinsic signal optical imaging (ISOI). The spatial extent of activity in M1 and PMd was then quantified in relation to the forelimb motor maps, which we obtained from the same hemisphere with intracortical microstimulation. ISOI showed that task-related activity was concentrated in patches that collectively overlapped <40% of the M1 and PMd forelimb representations. The spatial organization of the patches was consistent across task conditions despite small variations in forelimb use. Nevertheless, the largest condition differences in forelimb use were reflected in the magnitude of cortical activity. Distinct time course profiles from patches in arm zones and patches in hand zones suggest functional differences within the forelimb representations. The results collectively support an organizational framework wherein the forelimb representations contain subzones enriched with neurons tuned for specific actions. Thus, the often-overlooked spatial dimension of neural activity appears to be an important organizing feature of the neural code in frontal motor areas.


Assuntos
Córtex Motor , Animais , Córtex Motor/fisiologia , Mapeamento Encefálico , Macaca , Membro Anterior/fisiologia , Neurônios , Estimulação Elétrica
2.
Neuroimage ; 221: 117188, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711067

RESUMO

Motor cortex (M1) and somatosensory cortex (S1) are central to arm and hand control. Efforts to understand encoding in M1 and S1 have focused on temporal relationships between neural activity and movement features. However, it remains unclear how the neural activity is spatially organized within M1 and S1. Optical imaging methods are well-suited for revealing the spatio-temporal organization of cortical activity, but their application is sparse in monkey sensorimotor cortex. Here, we investigate the effectiveness of intrinsic signal optical imaging (ISOI) for measuring cortical activity that supports arm and hand control in a macaque monkey. ISOI revealed spatial domains that were active in M1 and S1 in response to instructed reaching and grasping. The lateral M1 domains overlapped the hand representation and contained a population of neurons with peak firing during grasping. In contrast, the medial M1 domain overlapped the arm representation and a population of neurons with peak firing during reaching. The S1 domain overlapped the hand representations of areas 1 and 2 and a population of neurons with peak firing upon hand contact with the target. Our single unit recordings indicate that ISOI domains report the locations of spatial clusters of functionally related neurons. ISOI is therefore an effective tool for surveilling the neocortex for "hot zones" of activity that supports movement. Combining the strengths of ISOI with other imaging modalities (e.g., fMRI, 2-photon) and with electrophysiological methods can open new frontiers in understanding the spatio-temporal organization of cortical signals involved in movement control.


Assuntos
Braço/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neuroimagem/métodos , Córtex Somatossensorial/fisiologia , Animais , Estimulação Elétrica , Eletrocorticografia , Macaca radiata , Masculino , Córtex Motor/diagnóstico por imagem , Neuroimagem/instrumentação , Neurônios/fisiologia , Imagem Óptica , Técnicas de Patch-Clamp , Córtex Somatossensorial/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...