Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 76(2): 357-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34890068

RESUMO

BACKGROUND AND AIMS: Hepatocyte transplantation holds great promise as an alternative approach to whole-organ transplantation. Intraportal and intrasplenic cell infusions are primary hepatocyte transplantation delivery routes for this procedure. However, patients with severe liver diseases often have disrupted liver and spleen architectures, which introduce risks in the engraftment process. We previously demonstrated i.p. injection of hepatocytes as an alternative route of delivery that could benefit this subpopulation of patients, particularly if less invasive and low-risk procedures are required; and we have established that lymph nodes may serve as extrahepatic sites for hepatocyte engraftment. However, whether other niches in the abdominal cavity support the survival and proliferation of the transplanted hepatocytes remains unclear. APPROACH AND RESULTS: Here, we showed that hepatocytes transplanted by i.p. injection engraft and generate ectopic liver tissues in fat-associated lymphoid clusters (FALCs), which are adipose tissue-embedded, tertiary lymphoid structures localized throughout the peritoneal cavity. The FALC-engrafted hepatocytes formed functional ectopic livers that rescued tyrosinemic mice from liver failure. Consistently, analyses of ectopic and native liver transcriptomes revealed a selective ectopic compensatory gene expression of hepatic function-controlling genes in ectopic livers, implying a regulated functional integration between the two livers. The lack of FALCs in the abdominal cavity of immunodeficient tyrosinemic mice hindered ectopic liver development, whereas the restoration of FALC formation through bone marrow transplantation restored ectopic liver development in these mice. Accordingly, induced abdominal inflammation increased FALC numbers, which improved hepatocyte engraftment and accelerated the recovery of tyrosinemic mice from liver failure. CONCLUSIONS: Abdominal FALCs are essential extrahepatic sites for hepatocyte engraftment after i.p. transplantation and, as such, represent an easy-to-access and expandable niche for ectopic liver regeneration when adequate growth stimulus is present.


Assuntos
Hepatopatias , Falência Hepática , Tecido Adiposo , Animais , Hepatócitos/metabolismo , Fígado/patologia , Hepatopatias/patologia , Falência Hepática/patologia , Regeneração Hepática , Camundongos
2.
PLoS One ; 15(10): e0240986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095822

RESUMO

Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.


Assuntos
Matriz Extracelular/genética , Fibrose , Perfilação da Expressão Gênica , Inflamação/genética , Escleroderma Sistêmico/genética , Fatores Etários , Algoritmos , Teorema de Bayes , Estudos de Casos e Controles , Fibrose/genética , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Pele/patologia
3.
Mol Ther Methods Clin Dev ; 18: 738-750, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913881

RESUMO

The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.

4.
Toxicol Sci ; 176(1): 162-174, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159786

RESUMO

Arsenic exposure impairs muscle metabolism, maintenance, progenitor cell differentiation, and regeneration following acute injury. Low to moderate arsenic exposures target muscle fiber and progenitor cell mitochondria to epigenetically decrease muscle quality and regeneration. However, the mechanisms for how low levels of arsenic signal for prolonged mitochondrial dysfunction are not known. In this study, arsenic attenuated murine C2C12 myoblasts differentiation and resulted in abnormal undifferentiated myoblast proliferation. Arsenic prolonged ligand-independent phosphorylation of mitochondrially localized epidermal growth factor receptor (EGFR), a major driver of proliferation. Treating cells with a selective EGFR kinase inhibitor, AG-1478, prevented arsenic inhibition of myoblast differentiation. AG-1478 decreased arsenic-induced colocalization of pY845EGFR with mitochondrial cytochrome C oxidase subunit II, as well as arsenic-enhanced mitochondrial membrane potential, reactive oxygen species generation, and cell cycling. All of the arsenic effects on mitochondrial signaling and cell fate were mitigated or reversed by addition of mitochondrially targeted agents that restored mitochondrial integrity and function. Thus, arsenic-driven pathogenesis in skeletal muscle requires sustained mitochondrial EGFR activation that promotes progenitor cell cycling and proliferation at the detriment of proper differentiation. Collectively, these findings suggest that the arsenic-activated mitochondrial EGFR pathway drives pathogenic signaling for impaired myoblast metabolism and function.


Assuntos
Arsênio/toxicidade , Poluentes Ambientais/toxicidade , Receptores ErbB/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Animais , Apoptose , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Camundongos , Mitocôndrias , Fibras Musculares Esqueléticas , Músculo Esquelético , Mioblastos , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais
5.
J Gerontol A Biol Sci Med Sci ; 74(7): 1031-1042, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843026

RESUMO

The year 2017 marked the 20th anniversary of the first publication describing Klotho. This single protein was and is remarkable in that its absence in mice conferred an accelerated aging, or progeroid, phenotype with a dramatically shortened life span. On the other hand, genetic overexpression extended both health span and life span by an impressive 30%. Not only has Klotho deficiency been linked to a number of debilitating age-related illnesses but many subsequent reports have lent credence to the idea that Klotho can compress the period of morbidity and extend the life span of both model organisms and humans. This suggests that Klotho functions as an integrator of organ systems, making it both a promising tool for advancing our understanding of the biology of aging and an intriguing target for interventional studies. In this review, we highlight advances in our understanding of Klotho as well as key challenges that have somewhat limited our view, and thus translational potential, of this potent protein.


Assuntos
Envelhecimento/genética , Glucuronidase , Longevidade/fisiologia , Animais , Senescência Celular/fisiologia , Glucuronidase/genética , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos , Pesquisa Translacional Biomédica
6.
Free Radic Biol Med ; 130: 528-541, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472365

RESUMO

Cellular memory underlies cellular identity, and thus constitutes a unifying mechanism of genetic disposition, environmental influences, and cellular adaptation. Here, we demonstrate that enduring physicochemical changes of mitochondrial networks invoked by transient stress, a phenomenon we term 'mitoengrams', underlie the transgenerational persistence of epigenetically scripted cellular behavior. Using C2C12 myogenic stem-like cells, we show that stress memory elicited by transient, low-level arsenite exposure is stored within a self-renewing subpopulation of progeny cells in a mitochondrial-dependent fashion. Importantly, we demonstrate that erasure of mitoengrams by administration of mitochondria-targeted electron scavenger was sufficient to reset key epigenetic marks of cellular memory and redirect the identity of the mitoengram-harboring progeny cells to a non-stress-like state. Together, our findings indicate that mnemonic information emanating from mitochondria support the balance between the persistence and transience of cellular memory.


Assuntos
Epigênese Genética , Mitocôndrias/genética , Estresse Fisiológico/genética , Adaptação Fisiológica/genética , Animais , Camundongos , Mitocôndrias/fisiologia , Mioblastos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
7.
ACS Chem Biol ; 11(2): 530-40, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26697918

RESUMO

While opto-genetics has proven to have tremendous value in revealing the functions of the macromolecular machinery in cells, it is not amenable to exploration of small molecules such as phospholipids (PLs). Here, we describe a redox opto-lipidomics approach based on a combination of high affinity light-sensitive ligands to specific PLs in mitochondria with LC-MS based redox lipidomics/bioinformatics analysis for the characterization of pro-apoptotic lipid signals. We identified the formation of mono-oxygenated derivatives of C18:2-containing cardiolipins (CLs) in mitochondria after the exposure of 10-nonylacridine orange bromide (NAO)-loaded cells to light. We ascertained that these signals emerge as an immediate opto-lipidomics response, but they decay long before the commencement of apoptotic cell death. We found that a protonophoric uncoupler caused depolarization of mitochondria and prevented the mitochondrial accumulation of NAO, inhibited the formation of C18:2-CL oxidation product,s and protected cells from death. Redox opto-lipidomics extends the power of opto-biologic protocols to studies of small PL molecules resilient to opto-genetic manipulations.


Assuntos
Apoptose , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Laranja de Acridina/análogos & derivados , Laranja de Acridina/metabolismo , Apoptose/efeitos da radiação , Cardiolipinas/química , Corantes/metabolismo , Biologia Computacional , Células HeLa , Humanos , Luz , Mitocôndrias/química , Mitocôndrias/efeitos da radiação , Oxirredução , Oxigênio/química
8.
Free Radic Biol Med ; 74: 64-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24960579

RESUMO

Over 4 million individuals in the United States, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 µg/L to over 1mg/L, with 100 µg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. Compared to nonexposed controls, mice exposed to drinking water containing 100 µg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There were no differences in the levels of inorganic arsenic or its monomethyl and dimethyl metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, compared to cells isolated from nonexposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant.


Assuntos
Arsênio/toxicidade , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Miofibrilas/patologia , Células-Tronco/efeitos dos fármacos , Animais , Autofagia , Células Cultivadas , Exposição Ambiental/efeitos adversos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Doenças Musculares/metabolismo , Estresse Oxidativo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura
9.
Chem Phys Lipids ; 179: 64-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24300280

RESUMO

Cardiolipins (CLs) are ancient and unusual dimeric phospholipids localized in the plasma membrane of bacteria and in the inner mitochondrial membrane of eukaryotes. In mitochondria, two types of asymmetries--trans-membrane and molecular--are essential determinants of CL functions. In this review, we describe CL-based signaling mitochondrial pathways realized via modulation of trans-membrane asymmetry and leading to externalization and peroxidation of CLs in mitophagy and apoptosis, respectively. We discuss possible mechanisms of CL translocations from the inner leaflet of the inner to the outer leaflet of the outer mitochondrial membranes. We present redox reaction mechanisms of cytochrome c-catalyzed CL peroxidation as a required stage in the execution of apoptosis. We also emphasize the significance of CL-related metabolic pathways as new targets for drug discovery. Finally, a remarkable diversity of polyunsaturated CL species and their oxidation products have evolved in eukaryotes vs. prokaryotes. This diversity--associated with CL molecular asymmetry--is presented as the basis for mitochondrial communications language.


Assuntos
Cardiolipinas/química , Cardiolipinas/metabolismo , Transdução de Sinais , Apoptose , Membrana Celular/metabolismo , Humanos , Mitofagia , Oxirredução
10.
Nat Cell Biol ; 15(10): 1197-1205, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24036476

RESUMO

Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial surface in primary cortical neurons and SH-SY5Y cells. RNAi knockdown of cardiolipin synthase or of phospholipid scramblase-3, which transports cardiolipin to the outer mitochondrial membrane, decreased the delivery of mitochondria to autophagosomes. Furthermore, we found that the autophagy protein microtubule-associated-protein-1 light chain 3 (LC3), which mediates both autophagosome formation and cargo recognition, contains cardiolipin-binding sites important for the engulfment of mitochondria by the autophagic system. Mutation of LC3 residues predicted as cardiolipin-interaction sites by computational modelling inhibited its participation in mitophagy. These data indicate that redistribution of cardiolipin serves as an 'eat-me' signal for the elimination of damaged mitochondria from neuronal cells.


Assuntos
Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia/fisiologia , Neurônios/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cardiolipinas/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Oxidopamina/farmacologia , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Rotenona/farmacologia , Desacopladores/farmacologia
11.
Anesthesiology ; 118(3): 649-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23299361

RESUMO

BACKGROUND: Hypotension and hypoxemia worsen traumatic brain injury outcomes. Hyperoxic resuscitation is controversial. The authors proposed that hyperoxia would improve hemodynamics and neuronal survival by augmenting oxygen delivery despite increased oxidative stress and neuroinflammation in experimental combined controlled cortical impact plus hemorrhagic shock in mice. METHODS: Adult C57BL6 mice received controlled cortical impact followed by 35 min of hemorrhagic shock (mean arterial pressure, 25-27 mmHg). The resuscitation phase consisted of lactated Ringer's boluses titrated to mean arterial pressure greater than 70 mmHg. Definitive care included returning shed blood. Either oxygen or room air was administered during the resuscitation phases. Brain tissue levels of oxidative stress and inflammatory markers were measured at 24 h and hippocampal neuronal survival was quantified at 7 days. RESULTS: Hyperoxia markedly increased brain tissue oxygen tension approximately four- to fivefold (n = 8) and reduced resuscitation fluid requirements approximately 15% (n = 53; both P < 0.05). Systemic and cerebral physiologic variables were not significantly affected by hyperoxia. Hippocampal neuron survival was approximately 40% greater with oxygen versus room air (n = 18, P = 0.03). However, ascorbate depletion doubled with oxygen versus room air (n = 11, P < 0.05). Brain tissue cytokines and chemokines were increased approximately 2- to 20-fold (n = 10) after combined controlled cortical impact injury plus hemorrhagic shock, whereas hyperoxia shifted cytokines toward a proinflammatory profile. CONCLUSIONS: Hyperoxic resuscitation of cortical impact plus hemorrhagic shock reduced fluid requirements and increased brain tissue oxygen tension and hippocampal neuronal survival but exacerbated ascorbate depletion and neuroinflammation. The benefits of enhanced oxygen delivery during resuscitation of traumatic brain injury may outweigh detrimental increases in oxidative stress and neuroinflammation.


Assuntos
Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Hiperóxia/metabolismo , Ressuscitação/métodos , Choque Hemorrágico/metabolismo , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/terapia , Sobrevivência Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Choque Hemorrágico/complicações , Choque Hemorrágico/terapia , Resultado do Tratamento
12.
J Neurosci Methods ; 201(1): 185-90, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21855575

RESUMO

Ascorbate is a vital reductant/free radical scavenger in the CNS, whose content defines - to a large extent - the redox status and the antioxidant reserves. Quick, reliable and specific methods for its measurement in brain samples are highly desirable. We have developed a new high-throughput screening assay for measurements of ascorbate using a fluorescence plate-reader. This assay is based on a direct reaction of ascorbate with a nitroxide radical conjugated with a fluorogenic acridine moiety, 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl radical (AC-TEMPO), yielding fluorescent hydroxylamine product (AC-TEMPO-H). The reaction was monitored over time using fluorescence and electron spin resonance techniques. The appearance of fluorescent AC-TEMPO-H was linear within the range of 3.75-75µM AscH(-) in the sample (0.5-10µM AscH(-) in the well). Assay was validated with high performance liquid chromatography method. The concentration of ascorbate in murine tissue samples, including brain samples after traumatic brain injury and hemorrhagic shock, was measured.


Assuntos
Ácido Ascórbico/química , Química Encefálica , Ensaios de Triagem em Larga Escala/métodos , Animais , Ácido Ascórbico/fisiologia , Química Encefálica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...