Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175596

RESUMO

Chemical probing, for decades, has been one of the most popular tools for studying the secondary structure of RNA molecules. Recently, protocols for simultaneous analysis of multiple RNAs have been developed, enabling in vivo transcriptome-wide interrogation of the RNA structure dynamics. One of the most popular methods is the selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP). In this study, we describe the evaluation of this protocol by addressing the influence of the reverse transcription enzymes, buffer conditions, and chemical probes on the properties of the cDNA library and the quality of mutational profiling-derived structural signals. Our results reveal a SuperScript IV (SSIV) reverse transcriptase as a more efficient enzyme for mutational profiling of SHAPE adducts and shed new light on the role of Mn2+ cations in the modulation of SSIV readthrough efficiency.


Assuntos
RNA , Transcrição Reversa , Sondas RNA/química , RNA/metabolismo , DNA Polimerase Dirigida por RNA , Conformação de Ácido Nucleico , Acilação
2.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360611

RESUMO

Due to the high exposition to changing environmental conditions, bacteria have developed many mechanisms enabling immediate adjustments of gene expression. In many cases, the required speed and plasticity of the response are provided by RNA-dependent regulatory mechanisms. This is possible due to the very high dynamics and flexibility of an RNA structure, which provide the necessary sensitivity and specificity for efficient sensing and transduction of environmental signals. In this review, we will discuss the current knowledge about known bacterial regulatory mechanisms which rely on RNA structure. To better understand the structure-driven modulation of gene expression, we describe the basic theory on RNA structure folding and dynamics. Next, we present examples of multiple mechanisms employed by RNA regulators in the control of bacterial transcription and translation.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Bacteriano/química , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...