Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 370(6512)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004487

RESUMO

Injuries to the central nervous system (CNS) are inefficiently repaired. Resident neural stem cells manifest a limited contribution to cell replacement. We have uncovered a latent potential in neural stem cells to replace large numbers of lost oligodendrocytes in the injured mouse spinal cord. Integrating multimodal single-cell analysis, we found that neural stem cells are in a permissive chromatin state that enables the unfolding of a normally latent gene expression program for oligodendrogenesis after injury. Ectopic expression of the transcription factor OLIG2 unveiled abundant stem cell-derived oligodendrogenesis, which followed the natural progression of oligodendrocyte differentiation, contributed to axon remyelination, and stimulated functional recovery of axon conduction. Recruitment of resident stem cells may thus serve as an alternative to cell transplantation after CNS injury.


Assuntos
Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Regeneração da Medula Espinal/fisiologia , Animais , Astrócitos/fisiologia , Axônios/fisiologia , Linhagem da Célula , Epêndima/citologia , Epêndima/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Remielinização/genética , Remielinização/fisiologia , Análise de Célula Única , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/genética
2.
Cell Stem Cell ; 11(3): 282-4, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22958925

RESUMO

Recently in Nature, Song et al. (2012) show that the neurotransmitter GABA acts directly on radial glia-like neural stem cells to maintain quiescence and provide a mechanism for how neuronal activity controls the production of new neurons in the hippocampus.

3.
Cell ; 143(7): 1161-73, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183078

RESUMO

The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.


Assuntos
Drosophila/citologia , Drosophila/metabolismo , Células-Tronco Neurais/citologia , Animais , Dieta , Drosophila/embriologia , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/citologia , Somatomedinas/metabolismo
4.
Cell ; 133(5): 769-71, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510921

RESUMO

During development, many neural stem cells "age" as they sequentially generate distinct neuronal or glial cell types. In this issue, Maurange et al. (2008) now identify the temporal control factors in Drosophila neural stem cells (neuroblasts) that regulate the fate of stem cell progeny and signal the end of stem cell proliferation.


Assuntos
Drosophila melanogaster/citologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Células-Tronco/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 363(1489): 39-56, 2008 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17309865

RESUMO

Drosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation. Progress has also been made in understanding the later stages of development, when neuroblasts become mitotically inactive, or quiescent, and are then reactivated postembryonically to generate the neurons that make up the adult nervous system. The ability to manipulate the steps leading from quiescence to proliferation and from proliferation to differentiation will have a major impact on the treatment of neurological injury and neurodegenerative disease.


Assuntos
Dípteros/citologia , Dípteros/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...