Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216782, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38453046

RESUMO

Pancreatic cancer poses a significant challenge within the field of oncology due to its aggressive behaviour, limited treatment choices, and unfavourable outlook. With a mere 10% survival rate at the 5-year mark, finding effective interventions becomes even more pressing. The intricate relationship between desmoplasia and hypoxia in the tumor microenvironment further complicates matters by promoting resistance to chemotherapy and impeding treatment efficacy. The dense extracellular matrix and cancer-associated fibroblasts characteristic of desmoplasia create a physical and biochemical barrier that impedes drug penetration and fosters an immunosuppressive milieu. Concurrently, hypoxia nurtures aggressive tumor behaviour and resistance to conventional therapies. a comprehensive exploration of emerging medications and innovative drug delivery approaches. Notably, advancements in nanoparticle-based delivery systems, local drug delivery implants, and oxygen-carrying strategies are highlighted for their potential to enhance drug accessibility and therapeutic outcomes. The integration of these strategies with traditional chemotherapies and targeted agents reveals the potential for synergistic effects that amplify treatment responses. These emerging interventions can mitigate desmoplasia and hypoxia-induced barriers, leading to improved drug delivery, treatment efficacy, and patient outcomes in pancreatic cancer. This review article delves into the dynamic landscape of emerging anticancer medications and innovative drug delivery strategies poised to overcome the challenges imposed by desmoplasia and hypoxia in the treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Preparações Farmacêuticas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hipóxia , Microambiente Tumoral , Sistemas de Liberação de Medicamentos
2.
Anal Biochem ; 687: 115448, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158106

RESUMO

There are limited studies that report the physiological levels of H2S in the eye. The currently available UV/Vis methods lack the required sensitivity and precision. Hence, the purpose of this study was to develop and validate a sensitive and robust pre-column derivatization LC-MS/MS method to measure changes in H2S levels in tissues from isolated porcine eyes. H2S was derivatized and an LC-MS/MS method was developed to monitor the derivatized product, Sulfide-dibimane (Sdb) using a reverse phase Waters Acquity BEH C18 column (1.7 µm, 2.1 × 100 mm). H2S quantification was performed using multiple-ion reaction monitoring (MRM) in positive mode, with the transitions of m/z 415.0 → m/z 223.0 for Sdb and m/z 353.0 → m/z 285.0 for internal standard (griseofulvin). This method provided a suitable way to quantify H2S and was then successfully adapted to measure H2S levels in isolated porcine iris-ciliary body tissues previously treated in the presence or absence of varying concentrations of lipopolysaccharide (LPS, 5-100 ng/ml), a pro-inflammatory agent. Isolated iris-ciliary bodies (ICB) from porcine eyes were cut into quadrants of approximately 50 mg and homogenized using a 1:3 volume of homogenizing buffer. H2S in the supernatant was then derivatized with monobromobimane and quantified.


Assuntos
Compostos Bicíclicos com Pontes , Sulfeto de Hidrogênio , Espectrometria de Massa com Cromatografia Líquida , Animais , Suínos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Sulfetos , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
3.
RSC Adv ; 11(50): 31284-31327, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496870

RESUMO

The exfoliation of two-dimensional (2D) hexagonal boron nitride nanosheets (h-BNNSs) from bulk hexagonal boron nitride (h-BN) materials has received intense interest owing to their fascinating physical, chemical, and biological properties. Numerous exfoliation techniques offer scalable approaches for harvesting single-layer or few-layer h-BNNSs. Their structure is very comparable to graphite, and they have numerous significant applications owing to their superb thermal, electrical, optical, and mechanical performance. Exfoliation from bulk stacked h-BN is the most cost-effective way to obtain large quantities of few layer h-BN. Herein, numerous methods have been discussed to achieve the exfoliation of h-BN, each with advantages and disadvantages. Herein, we describe the existing exfoliation methods used to fabricate single-layer materials. Besides exfoliation methods, various functionalization methods, such as covalent, non-covalent, and Lewis acid-base approaches, including physical and chemical methods, are extensively described for the preparation of several h-BNNS derivatives. Moreover, the unique and potent characteristics of functionalized h-BNNSs, like enhanced solubility in water, improved thermal conductivity, stability, and excellent biocompatibility, lead to certain extensive applications in the areas of biomedical science, electronics, novel polymeric composites, and UV photodetectors, and these are also highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...