Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(11): 105325, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36345342

RESUMO

Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased during exercise. Perturbations in ammonia metabolism consistently occur in chronic diseases, and may blunt beneficial skeletal muscle molecular responses and protein homeostasis with exercise. Phosphorylation of skeletal muscle proteins mediates cellular signaling responses to hyperammonemia and exercise. Comparative bioinformatics and machine learning-based analyses of published and experimentally derived phosphoproteomics data identified differentially expressed phosphoproteins that were unique and shared between hyperammonemic murine myotubes and skeletal muscle from exercise models. Enriched processes identified in both hyperammonemic myotubes and muscle from exercise models with selected experimental validation included protein kinase A (PKA), calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis. Our approach of feature extraction from comparative untargeted "omics" data allows for selection of preclinical models that recapitulate specific human exercise responses and potentially optimize functional capacity and skeletal muscle protein homeostasis with exercise in chronic diseases.

2.
Gastroenterology ; 156(6): 1761-1774, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768984

RESUMO

BACKGROUND & AIMS: Esophageal adenocarcinoma (EAC) is resistant to standard chemoradiation treatments, and few targeted therapies are available. We used large-scale tissue profiling and pharmacogenetic analyses to identify deregulated signaling pathways in EAC tissues that might be targeted to slow tumor growth or progression. METHODS: We collected 397 biopsy specimens from patients with EAC and nonmalignant Barrett's esophagus (BE), with or without dysplasia. We performed RNA-sequencing analyses and used systems biology approaches to identify pathways that are differentially activated in EAC vs nonmalignant dysplastic tissues; pathway activities were confirmed with immunohistochemistry and quantitative real-time polymerase chain reaction analyses of signaling components in patient tissue samples. Human EAC (FLO-1 and EsoAd1), dysplastic BE (CP-B, CP-C, CP-D), and nondysplastic BE (CP-A) cells were incubated with pharmacologic inhibitors or transfected with small interfering RNAs. We measured effects on proliferation, colony formation, migration, and/or growth of xenograft tumors in nude mice. RESULTS: Comparisons of EAC vs nondysplastic BE tissues showed hyperactivation of transforming growth factor-ß (TGFB) and/or Jun N-terminal kinase (JNK) signaling pathways in more than 80% of EAC samples. Immunohistochemical analyses showed increased nuclear localization of phosphorylated JUN and SMAD proteins in EAC tumor tissues compared with nonmalignant tissues. Genes regulated by the TGFB and JNK pathway were overexpressed specifically in EAC and dysplastic BE. Pharmacologic inhibition or knockdown of TGFB or JNK signaling components in EAC cells (FLO-1 or EsoAd1) significantly reduced cell proliferation, colony formation, cell migration, and/or growth of xenograft tumors in mice in a SMAD4-independent manner. Inhibition of the TGFB pathway in BE cell lines reduced the proliferation of dysplastic, but not nondysplastic, cells. CONCLUSIONS: In a transcriptome analysis of EAC and nondysplastic BE tissues, we found the TGFB and JNK signaling pathways to be hyperactivated in EACs and the genes regulated by these pathways to be overexpressed in EAC and dysplastic BE. Inhibiting these pathways in EAC cells reduces their proliferation, migration, and formation of xenograft tumors. Strategies to block the TGFB and JNK signaling pathways might be developed for treatment of EAC.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , RNA Neoplásico/análise , Fator de Crescimento Transformador beta/metabolismo , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dioxóis/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Testes Farmacogenômicos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Proteínas Smad/genética , Proteínas Smad/metabolismo , Biologia de Sistemas , Transcriptoma , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...