Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0072624, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847540

RESUMO

The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.

2.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962385

RESUMO

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Assuntos
Motivos de Aminoácidos , Bases de Dados de Proteínas , Eucariotos , Motivos de Aminoácidos/genética , Processamento de Proteína Pós-Traducional , Proteínas/genética , Proteínas/metabolismo , Eucariotos/genética , Internet
3.
Methods Mol Biol ; 2705: 153-197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668974

RESUMO

The SH2-binding phosphotyrosine class of short linear motifs (SLiMs) are key conditional regulatory elements, particularly in signaling protein complexes beneath the cell's plasma membrane. In addition to transmitting cellular signaling information, they can also play roles in cellular hijack by invasive pathogens. Researchers can take advantage of bioinformatics tools and resources to predict the motifs at conserved phosphotyrosine residues in regions of intrinsically disordered protein. A candidate SH2-binding motif can be established and assigned to one or more of the SH2 domain subgroups. It is, however, not so straightforward to predict which SH2 domains are capable of binding the given candidate. This is largely due to the cooperative nature of the binding amino acids which enables poorer binding residues to be tolerated when the other residues are optimal. High-throughput peptide arrays are powerful tools used to derive SH2 domain-binding specificity, but they are unable to capture these cooperative effects and also suffer from other shortcomings. Tissue and cell type expression can help to restrict the list of available interactors: for example, some well-studied SH2 domain proteins are only present in the immune cell lineages. In this article, we provide a table of motif patterns and four bioinformatics strategies that introduce a range of tools that can be used in motif hunting in cellular and pathogen proteins. Experimental followup is essential to determine which SH2 domain/motif-containing proteins are the actual functional partners.


Assuntos
Aminoácidos , Domínios de Homologia de src , Fosfotirosina , Linhagem da Célula , Membrana Celular
4.
Comput Struct Biotechnol J ; 20: 5098-5114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187929

RESUMO

U-Omp19 is a bacterial protease inhibitor from Brucella abortus that inhibits gastrointestinal and lysosomal proteases, enhancing the half-life and immunogenicity of co-delivered antigens. U-Omp19 is a novel adjuvant that is in preclinical development with various vaccine candidates. However, the molecular mechanisms by which it exerts these functions and the structural elements responsible for these activities remain unknown. In this work, a structural, biochemical, and functional characterization of U-Omp19 is presented. Dynamic features of U-Omp19 in solution by NMR and the crystal structure of its C-terminal domain are described. The protein consists of a compact C-terminal beta-barrel domain and a flexible N-terminal domain. The latter domain behaves as an intrinsically disordered protein and retains the full protease inhibitor activity against pancreatic elastase, papain and pepsin. This domain also retains the capacity to induce CD8+ T cells in vivo of U-Omp19. This information may lead to future rationale vaccine designs using U-Omp19 as an adjuvant to deliver other proteins or peptides in oral formulations against infectious diseases, as well as to design strategies to incorporate modifications in its structure that may improve its adjuvanticity.

5.
Nat Struct Mol Biol ; 29(8): 781-790, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948766

RESUMO

Many disordered proteins conserve essential functions in the face of extensive sequence variation, making it challenging to identify the mechanisms responsible for functional selection. Here we identify the molecular mechanism of functional selection for the disordered adenovirus early gene 1A (E1A) protein. E1A competes with host factors to bind the retinoblastoma (Rb) protein, subverting cell cycle regulation. We show that two binding motifs tethered by a hypervariable disordered linker drive picomolar affinity Rb binding and host factor displacement. Compensatory changes in amino acid sequence composition and sequence length lead to conservation of optimal tethering across a large family of E1A linkers. We refer to this compensatory mechanism as conformational buffering. We also detect coevolution of the motifs and linker, which can preserve or eliminate the tethering mechanism. Conformational buffering and motif-linker coevolution explain robust functional encoding within hypervariable disordered linkers and could underlie functional selection of many disordered protein regions.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Sequência de Aminoácidos , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Domínios Proteicos , Proteína do Retinoblastoma/metabolismo
6.
Structure ; 30(9): 1340-1353.e3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716663

RESUMO

The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.


Assuntos
Proteínas Repressoras , Proteína do Retinoblastoma , Ciclo Celular , Humanos , Proteínas Repressoras/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo
7.
J Mol Biol ; 434(10): 167563, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35351519

RESUMO

Over one hundred Mastadenovirus types infect seven orders of mammals. Virus-host coevolution may involve cospeciation, duplication, host switch and partial extinction events. We reconstruct Mastadenovirus diversification, finding that while cospeciation is dominant, the other three events are also common in Mastadenovirus evolution. Linear motifs are fast-evolving protein functional elements and key mediators of virus-host interactions, thus likely to partake in adaptive viral evolution. We study the evolution of eleven linear motifs in the Mastadenovirus E1A protein, a hub of virus-host protein-protein interactions, in the context of host diversification. The reconstruction of linear motif gain and loss events shows fast linear motif turnover, corresponding a virus-host protein-protein interaction turnover orders of magnitude faster than in model host proteomes. Evolution of E1A linear motifs is coupled, indicating functional coordination at the protein scale, yet presents motif-specific patterns suggestive of convergent evolution. We report a pervasive association between Mastadenovirus host diversification events and the evolution of E1A linear motifs. Eight of 17 host switches associate with the gain of one linear motif and the loss of four different linear motifs, while five of nine partial extinctions associate with the loss of one linear motif. The specific changes in E1A linear motifs during a host switch or a partial extinction suggest that changes in the host molecular environment lead to modulation of the interactions with the retinoblastoma protein and host transcriptional regulators. Altogether, changes in the linear motif repertoire of a viral hub protein are associated with adaptive evolution events during Mastadenovirus evolution.


Assuntos
Proteínas E1A de Adenovirus , Evolução Molecular , Interações Hospedeiro-Patógeno , Mastadenovirus , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Motivos de Aminoácidos , Animais , Mamíferos/virologia , Mastadenovirus/química , Mastadenovirus/genética , Mapeamento de Interação de Proteínas
8.
Front Immunol ; 13: 844837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296091

RESUMO

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Assuntos
Adjuvantes Imunológicos/metabolismo , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Compostos de Alúmen/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais , Formação de Anticorpos , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella/imunologia , Resistência à Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850135

RESUMO

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/metabolismo , Anotação de Sequência Molecular , Software , Sequência de Aminoácidos , DNA/genética , DNA/metabolismo , Conjuntos de Dados como Assunto , Ontologia Genética , Humanos , Internet , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo
10.
Nucleic Acids Res ; 50(D1): D497-D508, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718738

RESUMO

Almost twenty years after its initial release, the Eukaryotic Linear Motif (ELM) resource remains an invaluable source of information for the study of motif-mediated protein-protein interactions. ELM provides a comprehensive, regularly updated and well-organised repository of manually curated, experimentally validated short linear motifs (SLiMs). An increasing number of SLiM-mediated interactions are discovered each year and keeping the resource up-to-date continues to be a great challenge. In the current update, 30 novel motif classes have been added and five existing classes have undergone major revisions. The update includes 411 new motif instances mostly focused on cell-cycle regulation, control of the actin cytoskeleton, membrane remodelling and vesicle trafficking pathways, liquid-liquid phase separation and integrin signalling. Many of the newly annotated motif-mediated interactions are targets of pathogenic motif mimicry by viral, bacterial or eukaryotic pathogens, providing invaluable insights into the molecular mechanisms underlying infectious diseases. The current ELM release includes 317 motif classes incorporating 3934 individual motif instances manually curated from 3867 scientific publications. ELM is available at: http://elm.eu.org.


Assuntos
Doenças Transmissíveis/genética , Bases de Dados de Proteínas , Interações Hospedeiro-Patógeno/genética , Domínios e Motivos de Interação entre Proteínas , Software , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Ciclo Celular/genética , Membrana Celular/química , Membrana Celular/metabolismo , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/virologia , Ciclinas/química , Ciclinas/genética , Ciclinas/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/virologia , Regulação da Expressão Gênica , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Camundongos , Anotação de Sequência Molecular , Ligação Proteica , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo , Vírus/genética , Vírus/metabolismo
11.
Biomolecules ; 11(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439737

RESUMO

PDZ domains are binding modules mostly involved in cell signaling and cell-cell junctions. These domains are able to recognize a wide variety of natural targets and, among the PDZ partners, viruses have been discovered to interact with their host via a PDZ domain. With such an array of relevant and diverse interactions, PDZ binding specificity has been thoroughly studied and a traditional classification has grouped PDZ domains in three major specificity classes. In this work, we have selected four human PDZ domains covering the three canonical specificity-class binding mode and a set of their corresponding binders, including host/natural, viral and designed PDZ motifs. Through calorimetric techniques, we have covered the entire cross interactions between the selected PDZ domains and partners. The results indicate a rather basic specificity in each PDZ domain, with two of the domains that bind their cognate and some non-cognate ligands and the two other domains that basically bind their cognate partners. On the other hand, the host partners mostly bind their corresponding PDZ domain and, interestingly, the viral ligands are able to bind most of the studied PDZ domains, even those not previously described. Some viruses may have evolved to use of the ability of the PDZ fold to bind multiple targets, with resulting affinities for the virus-host interactions that are, in some cases, higher than for host-host interactions.


Assuntos
Domínios PDZ , Proteínas , Sítios de Ligação , Humanos , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo
12.
Sci Signal ; 14(665)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436497

RESUMO

The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the µ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin ß3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.


Assuntos
COVID-19/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , Internalização do Vírus , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , COVID-19/terapia , Sequência Conservada , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Integrinas/química , Integrinas/genética , Integrinas/fisiologia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Modelos Biológicos , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/fisiologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/fisiologia
13.
Nucleic Acids Res ; 49(D1): D404-D411, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33305318

RESUMO

The Protein Ensemble Database (PED) (https://proteinensemble.org), which holds structural ensembles of intrinsically disordered proteins (IDPs), has been significantly updated and upgraded since its last release in 2016. The new version, PED 4.0, has been completely redesigned and reimplemented with cutting-edge technology and now holds about six times more data (162 versus 24 entries and 242 versus 60 structural ensembles) and a broader representation of state of the art ensemble generation methods than the previous version. The database has a completely renewed graphical interface with an interactive feature viewer for region-based annotations, and provides a series of descriptors of the qualitative and quantitative properties of the ensembles. High quality of the data is guaranteed by a new submission process, which combines both automatic and manual evaluation steps. A team of biocurators integrate structured metadata describing the ensemble generation methodology, experimental constraints and conditions. A new search engine allows the user to build advanced queries and search all entry fields including cross-references to IDP-related resources such as DisProt, MobiDB, BMRB and SASBDB. We expect that the renewed PED will be useful for researchers interested in the atomic-level understanding of IDP function, and promote the rational, structure-based design of IDP-targeting drugs.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas/química , Humanos , Ferramenta de Busca , Proteína Supressora de Tumor p53/química
14.
Proc Natl Acad Sci U S A ; 117(31): 18574-18581, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661155

RESUMO

Many vertebrates have distinctive blue-green bones and other tissues due to unusually high biliverdin concentrations-a phenomenon called chlorosis. Despite its prevalence, the biochemical basis, biology, and evolution of chlorosis are poorly understood. In this study, we show that the occurrence of high biliverdin in anurans (frogs and toads) has evolved multiple times during their evolutionary history, and relies on the same mechanism-the presence of a class of serpin family proteins that bind biliverdin. Using a diverse combination of techniques, we purified these serpins from several species of nonmodel treefrogs and developed a pipeline that allowed us to assemble their complete amino acid and nucleotide sequences. The described proteins, hereafter named biliverdin-binding serpins (BBS), have absorption spectra that mimic those of phytochromes and bacteriophytochromes. Our models showed that physiological concentration of BBSs fine-tune the color of the animals, providing the physiological basis for crypsis in green foliage even under near-infrared light. Additionally, we found that these BBSs are most similar to human glycoprotein alpha-1-antitrypsin, but with a remarkable functional diversification. Our results present molecular and functional evidence of recurrent evolution of chlorosis, describe a biliverdin-binding protein in vertebrates, and introduce a function for a member of the serpin superfamily, the largest and most ubiquitous group of protease inhibitors.


Assuntos
Anuros/fisiologia , Biliverdina/metabolismo , Serpinas/metabolismo , Pigmentação da Pele/fisiologia , Animais , Anuros/classificação , Anuros/genética , Biliverdina/química , Mimetismo Biológico/fisiologia , Serpinas/química , Serpinas/genética , Pigmentação da Pele/genética
15.
Nucleic Acids Res ; 48(D1): D296-D306, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31680160

RESUMO

The eukaryotic linear motif (ELM) resource is a repository of manually curated experimentally validated short linear motifs (SLiMs). Since the initial release almost 20 years ago, ELM has become an indispensable resource for the molecular biology community for investigating functional regions in many proteins. In this update, we have added 21 novel motif classes, made major revisions to 12 motif classes and added >400 new instances mostly focused on DNA damage, the cytoskeleton, SH2-binding phosphotyrosine motifs and motif mimicry by pathogenic bacterial effector proteins. The current release of the ELM database contains 289 motif classes and 3523 individual protein motif instances manually curated from 3467 scientific publications. ELM is available at: http://elm.eu.org.


Assuntos
Motivos de Aminoácidos , Eucariotos , Apicoplastos/metabolismo , Citoesqueleto , Dano ao DNA , Bases de Dados de Proteínas , Fosfotirosina , Domínios de Homologia de src
16.
Virology ; 525: 117-131, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265888

RESUMO

E1A is the main transforming protein in mastadenoviruses. This work uses bioinformatics to extrapolate experimental knowledge from Human adenovirus serotype 5 and 12 E1A proteins to all known serotypes. A conserved domain architecture with a high degree of intrinsic disorder acts as a scaffold for multiple linear motifs with variable occurrence mediating the interaction with over fifty host proteins. While linear motifs contribute strongly to sequence conservation within intrinsically disordered E1A regions, motif repertoires can deviate significantly from those found in prototypical serotypes. Close to one hundred predicted residue-residue contacts suggest the presence of stable structure in the CR3 domain and of specific conformational ensembles involving both short- and long-range intramolecular interactions. Our computational results suggest that E1A sequence conservation and co-evolution reflect the evolutionary pressure to maintain a mainly disordered, yet non-random conformation harboring a high number of binding motifs that mediate viral hijacking of the cell machinery.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Conformação Proteica , Domínios Proteicos , Modificação Traducional de Proteínas
17.
J Mol Biol ; 430(16): 2389-2402, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29890118

RESUMO

The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291-L301, has an average helicity greater than 60% and the C-terminal segment, from S304-L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (>90%), even at non-interacting sites, for c-Myb homologues.


Assuntos
Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Sítios de Ligação , Fenômenos Biofísicos , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-myb/genética , Termodinâmica
18.
J Mol Biol ; 430(6): 777-792, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29414675

RESUMO

RNA transcription of mononegavirales decreases gradually from the 3' leader promoter toward the 5' end of the genome, due to a decay in polymerase processivity. In the respiratory syncytial virus and metapneumovirus, the M2-1 protein ensures transcription anti-termination. Despite being a homotetramer, respiratory syncytial virus M2-1 binds two molecules of RNA of 13mer or longer per tetramer, and temperature-sensitive secondary structure in the RNA ligand is unfolded by stoichiometric interaction with M2-1. Fine quantitative analysis shows positive cooperativity, indicative of conformational asymmetry in the tetramer. RNA binds to M2-1 through a fast bimolecular association followed by slow rearrangements corresponding to an induced-fit mechanism, providing a sequential description of the time events of cooperativity. The first binding event of half of the RNA molecule to one of the sites increases the affinity of the second binding event on the adjacent contacting protomer by 15-fold, product of increased effective concentration caused by the entropic link. This mechanism allows for high-affinity binding with an otherwise relaxed sequence specificity, and instead suggests a yet undefined structural recognition signature in the RNA for modulating gene transcription. This work provides a basis for an essential event for understanding transcription antitermination in pneumoviruses and its counterpart Ebola virus VP30.


Assuntos
Proteínas de Transporte/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Ebolavirus/metabolismo , Regulação Viral da Expressão Gênica , Genes Virais , Cinética , Metapneumovirus/genética , Metapneumovirus/metabolismo , Modelos Moleculares , Conformação Proteica , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Transcrição Gênica , Proteínas Virais/genética
19.
Protein Eng Des Sel ; 31(3): 69-77, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370437

RESUMO

Pocket proteins retinoblastoma (pRb), p107 and p130 are negative regulators of cellular proliferation and multifunctional proteins regulating development, differentiation and chromatin structure. The retinoblastoma protein is a potent tumor suppressor mutated in a wide range of human cancers, and oncogenic viruses often interfere with cell cycle regulation by inactivating pRb. The LxCxE and pRb AB groove short linear motifs (SLiMs) are key to many pocket protein mediated interactions including host and viral partners. A review of available experimental evidence reveals that several core residues composing each motif instance are determinants for binding. In the LxCxE motif, a fourth hydrophobic position that might allow variable spacing is required for binding. In both motifs, flanking regions including charged stretches and phosphorylation sites can fine-tune the binding affinity and specificity of pocket protein SLiM-mediated interactions. Flanking regions can modulate pocket protein binding specificity, or tune the high affinity interactions of viral proteins that hijack the pRb network. The location of SLiMs within intrinsically disordered regions allows faster evolutionary rates that enable viruses to acquire a functional variant of the core motif by convergent evolution, and subsequently test numerous combinations of flanking regions towards maximizing interaction specificity and affinity. This knowledge can guide future efforts directed at the design of peptide-based compounds that can target pocket proteins to regulate the G1/S cell cycle checkpoint or impair viral mediated pRb inactivation.


Assuntos
Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Motivos de Aminoácidos , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Ratos , Especificidade por Substrato
20.
Nucleic Acids Res ; 46(D1): D428-D434, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29136216

RESUMO

Short linear motifs (SLiMs) are protein binding modules that play major roles in almost all cellular processes. SLiMs are short, often highly degenerate, difficult to characterize and hard to detect. The eukaryotic linear motif (ELM) resource (elm.eu.org) is dedicated to SLiMs, consisting of a manually curated database of over 275 motif classes and over 3000 motif instances, and a pipeline to discover candidate SLiMs in protein sequences. For 15 years, ELM has been one of the major resources for motif research. In this database update, we present the latest additions to the database including 32 new motif classes, and new features including Uniprot and Reactome integration. Finally, to help provide cellular context, we present some biological insights about SLiMs in the cell cycle, as targets for bacterial pathogenicity and their functionality in the human kinome.


Assuntos
Bases de Dados de Proteínas , Células Eucarióticas/metabolismo , Interações Hospedeiro-Patógeno/genética , Anotação de Sequência Molecular , Proteínas/química , Software , Motivos de Aminoácidos , Animais , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Ciclo Celular/genética , Células Eucarióticas/citologia , Células Eucarióticas/microbiologia , Células Eucarióticas/virologia , Fungos/genética , Fungos/metabolismo , Humanos , Internet , Modelos Moleculares , Plantas/genética , Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Vírus/genética , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...