Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(28): e2309805, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38287735

RESUMO

Loading cocatalysts onto semiconductors is one of the most popular strategies to inhibit charge recombination, but the efficiency is generally hindered by the localized built-in electric field and the weakly connected interface. Here, this work designs and synthesizes a 1D P-doped CdS nanowire/Ni2P heterojunction with gradient doped P to address the challenges. In the composite, the gradient P doping not only creates a funneled bandgap structure with a built-in electric field oriented from the bulk of P-CdS to the surface, but also facilitates the formation of a tightly connected interface using the co-shared P element. Consequently, the photogenerated charge carriers are enabled to be pumped from inside to surface of the P-CdS and then smoothly across the interface to the Ni2P. The as-obtained P-CdS/Ni2P displays high visible-light-driven H2 evolution rate of ≈8265 µmol g-1 h-1, which is 336 times and 120 times as that of CdS and P-CdS, respectively. This work is anticipated to inspire more research attention for designing new gradient-doped semiconductor/cocatalyst heterojunction photocatalysts with bridged interface for efficient solar energy conversion.

2.
ACS Appl Mater Interfaces ; 13(11): 13044-13054, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33595268

RESUMO

Metal cocatalyst loading is one of the most widely explored strategies in promoting photocatalytic solar energy conversion. Engineering surface-active facets of metal cocatalyst and exploring how they modulate the reactivity is crucial for the further development of advanced photocatalysts. In this work, through controlled hybridization of two-dimensional (2D) TiO2 nanosheets with well-designed Pd nanocube (Pd NC) with exposed {100} facet and Pd nano-octahedron (NO) with exposed {111} facet, we unravel the distinct crystal facet effect of Pd cocatalyst in promoting the selective hydrogenation of nitroarenes to amines of TiO2 photocatalyst. The activity tests show that the Pd NO with {111} facet is a more efficient cocatalyst than the Pd NC with exposed {100} facet. The prepared TiO2-Pd NO composite displays a 900% enhancement of photocatalytic hydrogenation rate in comparison with bare TiO2, while the TiO2-Pd NC sample only shows a 200% photoactivity enhancement. Microscopic mechanism study discloses that the distinctive photoactivity improvement of Pd NO is ascribed to the concurrent modulation of the Schottky barrier height and enrichment of surface reactants: (i) the Pd NO with a lower Fermi level could result in steeper band bending of TiO2 (i.e., higher Schottky barrier) than the Pd NC, which is more efficient in boosting interfacial separation and inhibiting the recombination of photoexcited charge pairs; and (ii) the {111} facet of Pd has higher nitroarenes adsorption ability and especially stronger hydrogen enrichment capability, thus accelerating the surface hydrogenation process and contributing to a higher reaction rate. This work emphasizes the rational facet control of cocatalysts for enhancing the photocatalytic hydrogenation performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...