Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2305988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994230

RESUMO

Aqueous zinc-metal batteries are considered to have the potential for energy storage due to their high safety and low cost. However, the practical applications of zinc batteries are limited by dendrite growth and side reactions. Epitaxial growth is considered an effective method for stabilizing Zn anode, especially for manipulating the (002) plane of deposited zinc. However, (002) texture zinc is difficult to achieve stable cycle at high capacity due to its large lattice distortion and uneven electric field distribution. Here, a novel zinc anode with highly (101) texture (denoted as (101)-Zn) is constructed. Due to unique directional guidance and strong bonding effect, (101)-Zn can achieve dense vertical electroepitaxy in near-neutral electrolytes. In addition, the low grain boundary area inhibits the occurrence of side reactions. The resultant (101)-Zn symmetric cells exhibit excellent stability over 5300 h (4 mA cm-2 for 2 mAh cm-2 ) and 330 h (15 mA cm-2 for 10 mAh cm-2 ). Meanwhile, the cycle life of Zn//MnO2 full cell is meaningfully improved over 1000 cycles.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37903333

RESUMO

Many cathode materials store zinc ions based on the intercalation reaction mechanism in neutral aqueous Zn-ion batteries, and the structural design of the cathodes has been stuck in the curing mode by extending the ion diffusion channel. Here, we first develop halide ions to unlock the electrochemical activity of conversion-type Bi2O3 in aqueous Zn-ion batteries. Notably, the iodide ion shows the best performance compatibility with the Bi2O3 cathode. The electrochemical reaction mechanism studies show that iodide ions can be regarded as a redox medium to reduce the charge-transfer activation energy and motivate the conversion of Bi2O3 from Bi3+ to Bi0 during the cycle. Unsurprising, the discharge-specific capacity can reach 436.8 mAh g-1 at 0.5 A g-1 and achieve a cyclic lifespan of 6000 cycles at a current density of 3 A g-1. The activation of the Bi2O3 conversion reaction by iodide ions is of great significance for broadening the research range of ZIB cathode materials.

3.
Adv Mater ; 34(2): e2105133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676914

RESUMO

The zinc (Zn)-ion battery has attracted much attention due to its high safety and environmental protection. At present, the critical issues of the generation of dendrites and the accumulation of dead Zn on the surface will lead to a sharp decline of the battery life. Zn dendrites can be inhibited to some extent by constructing an interface protective coating. However, the existing rigid coating method cannot maintain conformal contact with Zn due to the volume change of Zn deposition and will cause fracture irreversibly during the cycle. Here, a highly self-adaptable poly(dimethylsiloxane) (PDMS)/TiO2- x coating is developed that can dynamically adapt to volume changes and inhibit dendrites growth. PDMS has high dynamic and self-adaptability due to the crosslinking of the B-O bond. In addition, the rapid and uniform transfer of Zn2+ is induced by the oxygen-vacancy-rich TiO2- x . The assembled cells still achieve 99.6% coulombic efficiency after 700 cycles at a current density of 10 mA cm-2 . The adaptive interface coating constructed provides a sufficient guarantee for the stable operation of the Zn anode.

4.
Adv Mater ; 32(42): e1908420, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32902016

RESUMO

The weak van der Waals interactions enable ion-intercalation-type hosts to be ideal pseudocapacitive materials for energy storage. Here, a methodology for the preparation of hydrated vanadium dioxide nanoribbon (HVO) with moderate transport pathways is proposed. Out of the ordinary, the intercalation pseudocapacitive reaction mechanism is discovered for HVO, which powers high-rate capacitive charge storage compared with the battery-type intercalation reaction. The main factor is that the defective crystalline structure provides suitable ambient spacing for rapidly accommodating and transporting cations. As a result, the HVO delivers a fast Zn2+ ion diffusion coefficient and a low Zn2+ diffusion barrier. The electrochemical results with intercalation pseudocapacitance demonstrate a high reversible capacity of 396 mAh g-1 at 0.05 A g-1 , and even maintain 88 mAh g-1 at a high current density of 50 A g-1 .

5.
ACS Appl Mater Interfaces ; 12(25): 28199-28205, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32422034

RESUMO

Mn-based cathodes are admittedly the most promising candidate to achieve the practical applications of aqueous zinc-ion batteries because of the high operating voltage and economic benefit. However, the design of Mn-based cathodes still remains challenging because of the vulnerable chemical architecture and strong electrostatic interaction that lead to the inferior reaction kinetics and rapid capacity decay. These intrinsic drawbacks need to be fundamentally addressed by rationally decorating the crystal structure. Herein, an oxygen-defective Mn-based cathode (Ocu-Mn2O3) is designed via a doping low-valence Cu-ion strategy. The oxygen defect can modify the internal electric field of the material and enhance the substantial electrostatic stability by compensating for the nonzero dipole moment. With the merits of oxygen deficiency, the Ocu-Mn2O3 electrode exhibits the significant diffusion coefficient in the range from 1 × 10-6 to 1 × 10-8, and good rate performance. In addition, the Ocu-Mn2O3 maintains the highly reversible cyclic stability with the capacity retention of 88% over 600 cycles. The charge storage mechanism is explored as well, illustrating that the oxygen defects can improve the electrochemical active sites of H+ insertion, achieving a better charge-storage capacity than Mn2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...