Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 388(1): 19-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25164962

RESUMO

Abnormalities in the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway are commonly observed in human cancers and contribute to chemotherapy resistance. Combination therapy, involving the use of molecular targeted agents and traditional cytotoxic drugs, may represent a promising strategy to lower resistance and enhance cytotoxicity. Here, we demonstrate the efficacy of an Akt inhibitor, MK-2206, in increasing the cytotoxic effect of either paclitaxel (Taxol) or cisplatin against the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Sequential treatment of Taxol or cisplatin, followed by MK-2206, induced a synergistic inhibition of cell proliferation and effectively promoted cell death, either by inhibiting the phosphorylation of Akt and its downstream effectors 4E-BP1 and p70S6K in SKOV3 cells or by restoring p53 levels, which were downregulated after Taxol or cisplatin treatment, in ES2 cells. Combination treatment also downregulated the pro-survival protein Bcl-2 in both SKOV3 and ES2 cells, which may have contributed to cell death. In addition, we discovered that Taxol/MK-2206 or cisplatin/MK-2206 combination treatment resulted in significant enhancement of intracellular reactive oxygen species (ROS) induced by MK-2206, in both SKOV3 and ES2 cells; however, MK-2206-induced growth inhibition was reversed by a ROS scavenger only in ES2 cells. MK-2206 also suppressed DNA repair, particularly in SKOV3 cells. Taken together, our results demonstrate that the Akt inhibitor MK-2206 enhances the efficacy of cytotoxic agents in both Akt-active and Akt-inactive ovarian cancer cells but through different mechanisms.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Paclitaxel/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
2.
Sci Rep ; 4: 5812, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25056273

RESUMO

BRCA1 is a phosphoprotein involved in many biological processes, including transcription, ubiquitination, checkpoint control, homologous recombination, and DNA repair. We have demonstrated that protein phosphatase 1α (PP1α) interacts with BRCA1 via a PP1-binding motif (898)KVTF(901), and can dephosphorylate multiple serine residues phosphorylated by checkpoint kinases. A K898E germline missense variant in the PP1-binding motif of BRCA1 has been found in an Ashkenazi patient and a non-Ashkenazi Argentinean patient with breast and ovarian cancer, but its clinical significance is still unknown. Here we report that the lysine residue in the PP1-binding motif of BRCA1 is highly conserved across many mammalian species. The K898E mutation interferes with the interaction between BRCA1 and PP1α. Moreover, while the expression of wild-type BRCA1 in Brca1-deficient cells improved cell survival after DNA damage induced by ionizing radiation (IR), expression of BRCA1 K898E proved unable to enhance cell survival. DNA damage repair mechanisms remained defective in these BRCA1 K898E-reconstituted cells, as revealed by the comet assay and IR-induced Rad51 foci formation assay. These results reflect the significance of the interaction between BRCA1 and PP1, and indicate that the K898E variant may render carriers susceptible to DNA damage and malignant transformation.


Assuntos
Proteína BRCA1/genética , Reparo do DNA , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Proteína BRCA1/química , Sítios de Ligação , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Sequência Conservada , Estudos de Associação Genética , Predisposição Genética para Doença , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Rad51 Recombinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...