Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603907

RESUMO

The secondary outbreak of cyanobacteria after algicide treatment has been a serious problem to water ecosystems. Hydrogen peroxide (H2O2) is an algaecide widely used in practice, but similar re-bloom problems are inevitably encountered. Our work found that Microcystis aeruginosa (M. aeruginosa) temporarily hibernates after H2O2 treatment, but there is still a risk of secondary outbreaks. Interestingly, the dormant period was as long as 20 and 28 days in 5 mg L-1 and 20 mg L-1 H2O2 treatment groups, respectively, but the photosynthetic activity was both restored much earlier (within 14 days). Subsequently, a quantitative imaging flow cytometry-based method was constructed and confirmed that the re-bloom had undergone two stages including first recovery and then re-division. The expression of ftsZ and fabZ genes showed that M. aeruginosa had active transcription processes related to cell division protein and fatty acid synthesis during the dormancy stat. Furthermore, metabolomics suggested that the recovery of M. aeruginosa was mainly by activating folate and salicylic acid synthesis pathways, which promoted environmental stress resistance, DNA synthesis, and cell membrane repair. This study reported the comprehensive mechanisms of secondary outbreak of M. aeruginosa after H2O2 treatment. The findings suggest that optimizing the dosage and frequency of H2O2, as well as exploring the potential use of salicylic acid and folic acid inhibitors, could be promising directions for future algal control strategies.


Assuntos
Peróxido de Hidrogênio , Microcystis , Microcystis/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Ácido Fólico , Ácido Salicílico/farmacologia , Proteínas de Bactérias/genética
2.
Environ Int ; 180: 108204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776621

RESUMO

Frequent outbreak of cyanobacteria is a serious problem for drinking water treatment. The microcystins released from Microcystis aeruginosa (M. aeruginosa) could cause irreversible damage to human health. Catalyst-free solar/periodate (PI) system has recently presented great potential for bacterial inactivation, whereas the application potential and underlying mechanisms of the effective M. aeruginosa control remain unclear. Our work delineated the key role of ROS that inactivating/harmless disposing M. aeruginosa in the simulated sunlight (SSL)/PI system. Singlet oxygen may specifically cause DNA damage but maintain membrane integrity, preventing the risk of microcystins leakage. The SSL/PI 300 µM system could also effectively inhibit M. aeruginosa recovery for >7 days and completely degrade microcystin-LR (50.0 µg/L) within 30 min. Non-targeted metabolomic analysis suggested that the SSL/PI system inactivated M. aeruginosa mainly by interrupting the Calvin-Benson cycle, which damaged the metabolic flux of glycolysis and its downstream pathways such as the oxidative PPP pathway and glutathione metabolism. Furthermore, the activated PI system exhibited an even better algal inhibition under natural sunlight irradiation, evidenced by the seriously damaged cell membrane of M. aeruginosa. Overall, this study reported the comprehensive mechanisms of algal control and application potentials of solar/PI systems. The findings facilitated the development of emerging algicidal technology and its application in controlling environmental harmful algae.


Assuntos
Microcystis , Humanos , Microcistinas/toxicidade , Microcistinas/metabolismo , Luz Solar , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...