Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458994

RESUMO

The maintenance of uric acid levels is crucial for the human body. In this study, the feasibility of using portable ultraviolet (UV) spectrophotometry to measure the uric acid of spot urine without the need to add reagents has been demonstrated for the first time. UV spectral analysis has been used to inspect the uric acid concentration in urine. It is found that the absorption spectrum of urine has a high correlation with the concentration of uric acid at a wavelength of around 290-300 nm. Uric acid levels measured with a spectral analyzer compared to uric acid concentrations measured with a traditional biochemical analysis showed good agreement. The portable prototype is label-free and capable of displaying the inspection result of each measurement within 10 s. In the long run, this device can assist people in checking uric acid levels of spot urine with higher frequency and can adjust diet or medication in real time for more efficient health management.


Assuntos
Dieta , Ácido Úrico , Humanos , Indicadores e Reagentes , Espectrofotometria Ultravioleta , Ácido Úrico/urina
2.
J Vis Exp ; (108): e53490, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26863503

RESUMO

Research into new and improved materials to be utilized in lithium-ion batteries (LIB) necessitates an experimental counterpart to any computational analysis. Testing of lithium-ion batteries in an academic setting has taken on several forms, but at the most basic level lies the coin cell construction. In traditional LIB electrode preparation, a multi-phase slurry composed of active material, binder, and conductive additive is cast out onto a substrate. An electrode disc can then be punched from the dried sheet and used in the construction of a coin cell for electrochemical evaluation. Utilization of the potential of the active material in a battery is critically dependent on the microstructure of the electrode, as an appropriate distribution of the primary components are crucial to ensuring optimal electrical conductivity, porosity, and tortuosity, such that electrochemical and transport interaction is optimized. Processing steps ranging from the combination of dry powder, wet mixing, and drying can all critically affect multi-phase interactions that influence the microstructure formation. Electrochemical probing necessitates the construction of electrodes and coin cells with the utmost care and precision. This paper aims at providing a step-by-step guide of non-aqueous electrode processing and coin cell construction for lithium-ion batteries within an academic setting and with emphasis on deciphering the influence of drying and calendaring.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Condutividade Elétrica , Íons/química
3.
Phys Chem Chem Phys ; 17(15): 9812-27, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25774495

RESUMO

Solid electrolyte interphase (SEI) formation, due to the electrochemical reaction between the salt and solvent in the electrolyte, is a key contributor to the electrode performance decay in lithium-ion batteries. The active particle morphology and electrode microstructure affect the side reaction rate and hence the SEI induced interfacial transport and impedance behavior. The change resistance due to the variation of SEI thickness can be inferred from electrochemical impedance spectroscopy. In this study, we proposed a microstructure-aware impedance model to predict the effect of electrode microstructure on impedance response. Our model successfully captures the influence of active particle morphology on the SEI formation and corresponding impedance characteristics. Different electrode realizations with microstructural and compositional variations have been considered. The critical influence of active material morphology, mean particle size, binder and electrolyte volume fractions on the SEI formation and impedance behavior reveals the underlying interdependences of the interfacial and transport resistance modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...