Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2217877121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412124

RESUMO

Intestinal epithelial expression of the tight junction protein claudin-2, which forms paracellular cation and water channels, is precisely regulated during development and in disease. Here, we show that small intestinal epithelial claudin-2 expression is selectively upregulated in septic patients. Similar changes occurred in septic mice, where claudin-2 upregulation coincided with increased flux across the paracellular pore pathway. In order to define the significance of these changes, sepsis was induced in claudin-2 knockout (KO) and wild-type (WT) mice. Sepsis-induced increases in pore pathway permeability were prevented by claudin-2 KO. Moreover, claudin-2 deletion reduced interleukin-17 production and T cell activation and limited intestinal damage. These effects were associated with reduced numbers of neutrophils, macrophages, dendritic cells, and bacteria within the peritoneal fluid of septic claudin-2 KO mice. Most strikingly, claudin-2 deletion dramatically enhanced survival in sepsis. Finally, the microbial changes induced by sepsis were less pathogenic in claudin-2 KO mice as survival of healthy WT mice injected with cecal slurry collected from WT mice 24 h after sepsis was far worse than that of healthy WT mice injected with cecal slurry collected from claudin-2 KO mice 24 h after sepsis. Claudin-2 upregulation and increased pore pathway permeability are, therefore, key intermediates that contribute to development of dysbiosis, intestinal damage, inflammation, ineffective pathogen control, and increased mortality in sepsis. The striking impact of claudin-2 deletion on progression of the lethal cascade activated during sepsis suggests that claudin-2 may be an attractive therapeutic target in septic patients.


Assuntos
Claudina-2 , Sepse , Animais , Humanos , Camundongos , Claudina-2/genética , Claudina-2/metabolismo , Disbiose/genética , Disbiose/metabolismo , Função da Barreira Intestinal , Mucosa Intestinal/metabolismo , Permeabilidade , Sepse/metabolismo , Junções Íntimas/metabolismo , Regulação para Cima
2.
Immunohorizons ; 8(1): 74-88, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226924

RESUMO

Chronic alcohol use increases morbidity and mortality in the setting of sepsis. Both chronic alcohol use and sepsis are characterized by immune dysregulation, including overexpression of T cell coinhibitory molecules. We sought to characterize the role of CTLA-4 during sepsis in the setting of chronic alcohol exposure using a murine model of chronic alcohol ingestion followed by cecal ligation and puncture. Results indicated that CTLA-4 expression is increased on CD4+ T cells isolated from alcohol-drinking septic mice as compared with either alcohol-drinking sham controls or water-drinking septic mice. Moreover, checkpoint inhibition of CTLA-4 improved sepsis survival in alcohol-drinking septic mice, but not water-drinking septic mice. Interrogation of the T cell compartments in these animals following pharmacologic CTLA-4 blockade, as well as following conditional Ctla4 deletion in CD4+ T cells, revealed that CTLA-4 deficiency promoted the activation and proliferation of effector regulatory T cells and the generation of conventional effector memory CD4+ T cells. These data highlight an important role for CTLA-4 in mediating mortality during sepsis in the setting of chronic alcohol exposure and may inform future approaches to develop targeted therapies for this patient population.


Assuntos
Etanol , Inibidores de Checkpoint Imunológico , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Antígeno CTLA-4 , Etanol/efeitos adversos , Células T de Memória , Sepse/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Front Neurol ; 14: 1215876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822524

RESUMO

Patients with sickle cell anemia (SCA) have a high incidence of ischemic stroke, but are usually excluded from thrombolytic therapy due to concerns for cerebral hemorrhage. Maladaptation to cerebral ischemia may also contribute to the stroke propensity in SCA. Here we compared post-stroke cortical collateral circulation in transgenic sickle (SS) mice, bone marrow grafting-derived SS-chimera, and wildtype (AA) controls, because collateral circulation is a critical factor for cell survival within the ischemic penumbra. Further, it has been shown that SS mice develop poorer neo-collateral perfusion after limb ischemia. We used the middle cerebral artery (MCA)-targeted photothrombosis model in this study, since it is better tolerated by SS mice and creates a clear infarct core versus peri-infarct area. Compared to AA mice, SS mice showed enlarged infarction and lesser endothelial proliferation after photothrombosis. SS-chimera showed anemia, hypoxia-induced erythrocyte sickling, and attenuated recovery of blood flow in the ipsilateral cortex after photothrombosis. In AA chimera, cerebral blood flow in the border area between MCA and the anterior cerebral artery (ACA) and posterior cerebral artery (PCA) trees improved from 44% of contralateral level after stroke to 78% at 7 d recovery. In contrast, blood flow in the MCA-ACA and MCA-PCA border areas only increased from 35 to 43% at 7 d post-stroke in SS chimera. These findings suggest deficits of post-stroke collateral circulation in SCA. Better understanding of the underpinnings may suggest novel stroke therapies for SCA patients.

4.
Shock ; 60(2): 280-290, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405872

RESUMO

ABSTRACT: Alcohol use disorder is associated with increased mortality in septic patients. Murine studies demonstrate that ethanol/sepsis is associated with changes in gut integrity. This study examined intestinal permeability after ethanol/sepsis and investigated mechanisms responsible for alterations in barrier function. Mice were randomized to drink either 20% ethanol or water for 12 weeks and then were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability was disproportionately increased in ethanol/septic mice via the pore, leak, and unrestricted pathways. Consistent with increased permeability in the leak pathway, jejunal myosin light chain (MLC) kinase (MLCK) expression and the ratio of phospho-MLC to total MLC were both increased in ethanol/CLP. Gut permeability was altered in MLCK -/- mice in water/CLP; however, permeability was not different between WT and MLCK -/- mice in ethanol/CLP. Similarly, jejunal IL-1ß levels were decreased while systemic IL-6 levels were increased in MLCK -/- mice in water/CLP but no differences were identified in ethanol/CLP. While we have previously shown that mortality is improved in MLCK -/- mice after water/CLP, mortality was significantly worse in MLCK -/- mice after ethanol/CLP. Consistent with an increase in the pore pathway, claudin 4 levels were also selectively decreased in ethanol/CLP WT mice. Furthermore, mRNA expression of jejunal TNF and IFN-γ were both significantly increased in ethanol/CLP. The frequency of CD4 + cells expressing TNF and IL-17A and the frequency of CD8 + cells expressing IFN-γ in Peyer's Patches were also increased in ethanol/CLP. Thus, there is an ethanol-specific worsening of gut barrier function after CLP that impacts all pathways of intestinal permeability, mediated, in part, via changes to the tight junction. Differences in the host response in the setting of chronic alcohol use may play a role in future precision medicine approaches toward the treatment of sepsis.


Assuntos
Sepse , Junções Íntimas , Animais , Camundongos , Etanol , Imunidade , Mucosa Intestinal/metabolismo , Punções , Sepse/metabolismo , Junções Íntimas/metabolismo
5.
J Psychiatr Res ; 160: 210-216, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36857985

RESUMO

INTRODUCTION: Amygdala and serotonergic system abnormalities have been documented in major depressive disorder (MDD). However, most studies have been conducted on recurrent MDD, and only a few have assessed their interaction. This study aimed to concurrently examine both the amygdala and serotonergic systems and their clinical relevance in first-episode, drug-naïve MDD. METHODS: This study included 27 patients with first-episode, drug-naïve MDD and 27 age- and gender-matched healthy controls (HCs). The amygdala substructure volumes were performed with Freesurfer from a 1.5 T magnetic resonance image. Serotonin transporter (SERT) availability was detected by single-photon emission computed tomography with 123I-ADAM. The Benjamini-Hochberg method was applied to adjust for multiple comparisons. RESULTS: No significant difference was found in the amygdala substructure volume and SERT availability between the two groups, respectively. Within MDD patients, the right medial, cortical nucleus, and centromedial volumes were positively associated with caudate SERT availability, respectively. Moreover, the right lateral nucleus volume in the amygdala was positively correlated with depression severity. However, these significances did not survive correction for multiple testing. CONCLUSIONS: There were no significant abnormalities in the amygdala substructure volumes and SERT availability in patients with first-episode, drug-naïve MDD. We did not observe an association between amygdala substructure volume and serotonergic dysregulation and their correlations with depression severity in patients with MDD. A larger sample size is warranted to elucidate the actual correlation.


Assuntos
Transtorno Depressivo Maior , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Projetos Piloto , Tomografia Computadorizada de Emissão de Fóton Único , Tonsila do Cerebelo/metabolismo , Imageamento por Ressonância Magnética
6.
Acta Derm Venereol ; 103: adv00875, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36852577

RESUMO

Chronic pruritus is an unpleasant sensory perception that negatively affects quality of life and is common among patients with type 2 diabetes mellitus. Current antipruritic therapies are insufficiently effective. Thus, the mediation of diabetic pruritus by histamine-independent pathways is likely. The aim of this study was to identify possible mediators responsible for diabetic pruritus. A total of 87 patients with type 2 diabetes mellitus were analysed, of whom 59 had pruritus and 28 did not. The 2 groups were assessed for baseline demographics, serum biochemistry parameters, cytokines, and chemokines. This study also investigated the associations of these factors with the severity of itching. Neither haemoglobin A1c nor serum creatinine levels were correlated with severity of itching. Significantly higher levels of interleukin-4 (p = 0.004), interleukin-13 (p = 0.006), granulocyte-macrophage colony-stimulating factor (p < 0.001) and C-X-C motif chemokine ligand 10 (p = 0.028) were observed in the patients with pruritus than in those without pruritus. Moreover, the levels of these mediators were positively correlated with the severity of itching. Thus, novel antipruritic drugs can be developed to target these molecules. This is the first study to compare inflammatory mediators comprehensively in patients with diabetes mellitus with pruritus vs those without pruritus.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Qualidade de Vida , Prurido/diagnóstico , Prurido/tratamento farmacológico , Prurido/etiologia , Antipruriginosos , Citocinas
7.
Shock ; 59(4): 612-620, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36640152

RESUMO

ABSTRACT: Increased epithelial permeability in sepsis is mediated via disruptions in tight junctions, which are closely associated with the perijunctional actin-myosin ring. Genetic deletion of myosin light chain kinase (MLCK) reverses sepsis-induced intestinal hyperpermeability and improves survival in a murine model of intra-abdominal sepsis. In an attempt to determine the generalizability of these findings, this study measured the impact of MLCK deletion on survival and potential associated mechanisms following pneumonia-induced sepsis. MLCK -/- and wild-type mice underwent intratracheal injection of Pseudomonas aeruginosa . Unexpectedly, survival was significantly worse in MLCK -/- mice than wild-type mice. This was associated with increased permeability to Evans blue dye in bronchoalveolar lavage fluid but not in tissue homogenate, suggesting increased alveolar epithelial leak. In addition, bacterial burden was increased in bronchoalveolar lavage fluid. Cytokine array using whole-lung homogenate demonstrated increases in multiple proinflammatory and anti-inflammatory cytokines in knockout mice. These local pulmonary changes were associated with systemic inflammation with increased serum levels of IL-6 and IL-10 and a marked increase in bacteremia in MLCK -/- mice. Increased numbers of both bulk and memory CD4 + T cells were identified in the spleens of knockout mice, with increased early and late activation. These results demonstrate that genetic deletion of MLCK unexpectedly increases mortality in pulmonary sepsis, associated with worsened alveolar epithelial leak and both local and systemic inflammation. This suggests that caution is required in targeting MLCK for therapeutic gain in sepsis.


Assuntos
Pulmão , Quinase de Cadeia Leve de Miosina , Pneumonia , Sepse , Animais , Camundongos , Citocinas , Inflamação , Mucosa Intestinal , Pulmão/metabolismo , Pulmão/patologia , Camundongos Knockout , Quinase de Cadeia Leve de Miosina/genética , Permeabilidade , Pneumonia/complicações , Sepse/patologia , Junções Íntimas/fisiologia
8.
JCI Insight ; 7(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819838

RESUMO

Expression of the tight junction-associated protein junctional adhesion molecule-A (JAM-A) is increased in sepsis, although the significance of this is unknown. Here, we show that septic JAM-A -/- mice have increased gut permeability, yet paradoxically have decreased bacteremia and systemic TNF and IL-1ß expression. Survival is improved in JAM-A-/- mice. However, intestine-specific JAM-A-/- deletion does not alter mortality, suggesting that the mortality benefit conferred in mice lacking JAM-A is independent of the intestine. Septic JAM-A-/- mice have increased numbers of splenic CD44hiCD4+ T cells, decreased frequency of TNF+CD4+ cells, and elevated frequency of IL-2+CD4+ cells. Septic JAM-A-/- mice have increased numbers of B cells in mesenteric lymph nodes with elevated serum IgA and intraepithelial lymphocyte IgA production. JAM-A-/- × RAG-/- mice have improved survival compared with RAG-/- mice and identical mortality as WT mice. Gut neutrophil infiltration and neutrophil phagocytosis are increased in JAM-A-/- mice, while septic JAM-A-/- mice depleted of neutrophils lose their survival advantage. Therefore, increased bacterial clearance via neutrophils and an altered systemic inflammatory response with increased opsonizing IgA produced through the adaptive immune system results in improved survival in septic JAM-A-/- mice. JAM-A may be a therapeutic target in sepsis via immune mechanisms not related to its role in permeability.


Assuntos
Moléculas de Adesão Celular/metabolismo , Molécula A de Adesão Juncional , Receptores de Superfície Celular/metabolismo , Sepse , Animais , Moléculas de Adesão Celular/genética , Modelos Animais de Doenças , Imunoglobulina A , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Receptores de Superfície Celular/genética , Sepse/genética
9.
Neurobiol Dis ; 171: 105802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753626

RESUMO

ß-thalassemia is associated with multiple hematological and cerebrovascular symptoms linked to a hypercoagulable state that has not been fully replicated in animal models for the development of stroke treatments. Herein we compared the physiological properties and responses to transient cerebral hypoxia-ischemia (tHI) between six-month-old wildtype and heterozygous Th3/+ mice, a model of non-transfusion-dependent ß-thalassemia intermedia (ß-TI). We found that Th3/+ mice developed microcytic anemia, splenomegaly, higher platelet counts, and increased platelet-erythrocyte plus erythrocyte-leukocyte aggregates. Furthermore, Th3/+ mice showed diminished cerebrovascular reactivity (CVR) and cortical oxygen saturation under repetitive hypercapnic challenges. When subjected to a sub-threshold tHI insult, platelets and leukocytes in Th3/+ mice adhered to the cerebrovascular wall or formed aggregates, while their counterparts flew through smoothly in wildtype mice. Subsequently, Th3/+ mice showed increased fibrin deposition around cerebral blood vessels and larger infarction than wildtype mice, especially in female Th3/+ mice. Collectively these results showed that Th3/+ mice mimic key clinical features and a propensity to thromboembolism in ß-TI patients. The hypercoagulable state in Th3/+ mice is likely caused by multiple hematological and CVR anomalies that are similar, but are not identical to those in the mouse model of sickle cell anemia. As such, we suggest that Th3/+ mice are a useful model to study the pathological mechanisms and prophylactic stroke treatments in thalassemia patients.


Assuntos
Hipóxia-Isquemia Encefálica , Acidente Vascular Cerebral , Talassemia beta , Animais , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Acidente Vascular Cerebral/complicações , Talassemia beta/complicações , Talassemia beta/patologia
10.
Am J Cancer Res ; 12(3): 1088-1101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411222

RESUMO

Liquid biopsy test has a better uptake for colorectal cancer (CRC) screening. However, suboptimal detection of early-staged colorectal neoplasia (CRN) limits its application. Here, we established an early-staged CRN blood test using error-corrected sequencing by comparing clonal hematopoiesis (CH) of 63 CRN patients and that of 32 controls. We identified 1,446 variants and classified the uniqueness in CRN patients. There was no significance difference in the amount of variant between CRNs and controls, but the uniqueness of variants with defective DNA mismatch repair-related mutational signature was addressed from peripheral blood in early-staged CRN patients. By machine learning approach, the early-staged CRNs was discriminated from controls with an AUC of 0.959 and an accuracy of 0.937 (95% CI, 0.863 to 0.968). The CRN predictive model was further validated by additional 20 CRNs and 10 controls and showed the accuracy, sensitivity, specificity, positive prediction value (PPV) and negative prediction value (NPV) of 0.933 (95% CI: 0.779 to 0.992), 0.95, 0.90, 0.95 and 0.90, respectively. In summary, we develop a CH-based liquid biopsy test with machine learning approach, which not only increase screening uptake but also improve the detection rate of early-staged CRN.

11.
Theranostics ; 12(2): 512-529, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976198

RESUMO

Rationale: Monocytes belong to the mononuclear phagocyte system and are immune responders to tissue injury and infection. There were also reports of monocytes transforming to microglia-like cells. Here we explore the roles of monocytes in microglia ontogeny and the pathogenesis of neonatal cerebral hypoxic-ischemic (HI) brain injury in mice. Methods: We used three genetic methods to track the development of monocytes, including CX3CR1GFP/+; CCR2RFP/+ reporter mice, adoptive transfer of GFP+ monocytes, and fate-mapping with CCR2-CreER mice, in neonatal mouse brains with or without lipopolysaccharide (LPS, 0.3 mg/kg)-sensitized Vannucci HI. We also used genetic (CCR2RFP/ RFP, CCR2 knockout) and pharmacological methods (RS102895, a CCR2 antagonist) to test the roles of monocytic influx in LPS/HI brain injury. Results: CCR2+ monocytes entered the late-embryonic brains via choroid plexus, but rapidly became CX3CR1+ amoeboid microglial cells (AMCs). The influx of CCR2+ monocytes declined after birth, but recurred after HI or LPS-sensitized HI (LPS/HI) brain injury, particularly in the hippocampus. The CCR2-CreER-based fate-mapping showed that CCR2+ monocytes became CD68+ TNFα+ macrophages within 4 d after LPS/HI, and maintained as TNFα+ MHCII+ macrophages or persisted as Tmem119+ Sall1+ P2RY12+ ramified microglia for at least five months after injury. Genetic deletion of the chemokine receptor CCR2 markedly diminished monocytic influx, the expression of pro- and anti-inflammatory cytokines, and brain damage. Post-LPS/HI application of RS102895 also reduced inflammatory responses and brain damage, leading to better cognitive functions. Conclusion: These results suggest that monocytes promote acute inflammatory responses and may become pathological microglia long after the neonatal LPS/HI insult. Further, blocking the influx of monocytes may be a potential therapy for neonatal brain injury.


Assuntos
Lesões Encefálicas/patologia , Hipóxia-Isquemia Encefálica/patologia , Microglia/patologia , Monócitos/imunologia , Doenças Neuroinflamatórias/patologia , Transferência Adotiva , Animais , Animais Recém-Nascidos , Movimento Celular , Células Cultivadas , Plexo Corióideo/citologia , Plexo Corióideo/imunologia , Feminino , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/transplante , Doenças Neuroinflamatórias/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-37065537

RESUMO

Naegleria fowleri, or the "brain-eating amoeba," is responsible for a rare, but lethal, infection known as primary amoebic meningoencephalitis (PAM). Confirmed PAM cases have seen both a rise in numbers, as well as expansion of geographic range over the past several decades. There is no effective therapy for PAM and the clinical prognosis remains grim with a mortality rate over 95%. The role of the immune response in disease prevention and disease severity remains unclear. In this review, we explore potential roles of inflammatory immune responses to N. fowleri in disease pathogenesis with a primary focus on pro-inflammatory cytokines IL-1, IL-6, and TNFα. We also discuss modulating proinflammatory cytokines as an additional immune therapy in PAM treatment.

13.
Sensors (Basel) ; 21(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502599

RESUMO

To track moving targets undergoing unknown translational and rotational motions, a tracking controller is developed for unmanned aerial vehicles (UAVs). The main challenges are to control both the relative position and orientation between the target and the UAV to within desired values, and to guarantee that the generated control input to the UAV is feasible (i.e., below its motion capability). Moreover, the UAV is controlled to ensure that the target always remains within the field of view of the onboard camera. These control objectives were achieved by developing a nonlinear-model predictive controller, in which the future motion of the target is predicted by quadratic programming (QP). Since constraints of the feature vector and the control input are considered when solving the optimal control problem, the control inputs can be bounded and the target can remain inside the image. Three simulations were performed to compare the efficacy and performance of the developed controller with a traditional image-based visual servoing controller.

14.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100383

RESUMO

TIGIT is a recently identified coinhibitory receptor that is upregulated in the setting of cancer and functionally contributes to the impairment of antitumor immunity. However, its role during sepsis is unknown. Because patients with cancer are 10 times more likely to die of sepsis than previously healthy (PH) patients with sepsis, we interrogated the role of TIGIT during sepsis in the context of preexistent malignancy. PH mice or cancer (CA) mice inoculated with lung carcinoma cells were made septic by cecal ligation and puncture (CLP). We found that sepsis induced TIGIT upregulation predominantly on Tregs and NK cells in both PH and CA mice. Anti-TIGIT Ab improved the 7-d survival of CA septic mice but not PH mice after CLP. Treatment of CA septic animals but not PH septic animals with anti-TIGIT mAb significantly reversed sepsis-induced loss of CD4+ T cells, CD8+ T cells, Foxp3+ Treg, and CD19+ B cells in the spleen, which was the result of decreased caspase-3+ apoptotic cells. In sum, we found that anti-TIGIT Ab reversed sepsis-induced T cell apoptosis in CA septic mice and led to a significant survival benefit, suggesting its use as a potential immunotherapy to improve outcomes in septic patients with cancer.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Células Matadoras Naturais/imunologia , Receptores Imunológicos/imunologia , Sepse/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ceco/cirurgia , Ligadura , Camundongos , Punções , Receptores Imunológicos/antagonistas & inibidores
15.
J Immunol ; 206(10): 2412-2419, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33911005

RESUMO

Sepsis induces significant immune dysregulation characterized by lymphocyte apoptosis and alterations in the cytokine milieu. Because cancer patients exhibit a 10-fold greater risk of developing sepsis compared with the general population, we aimed to understand how pre-existing malignancy alters sepsis-induced immune dysregulation. To address this question, we assessed the impact of tumor-specific CD8+ T cells on the immune response in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. Tumor-bearing animals containing Thy1.1+ tumor-specific CD8+ T cells were subjected to CLP, and groups of animals received anti-Thy1.1 mAb to deplete tumor-specific CD8+ T cells or isotype control. Results indicated that depleting tumor-specific T cells significantly improved mortality from sepsis. The presence of tumor-specific CD8+ T cells resulted in increased expression of the 2B4 coinhibitory receptor and increased apoptosis of endogenous CD8+ T cells. Moreover, tumor-specific T cells were not reduced in number in the tumors during sepsis but did exhibit impaired IFN-γ production in the tumor, tumor draining lymph node, and spleen 24 h after CLP. Our research provides novel insight into the mechanisms by which pre-existing malignancy contributes to increased mortality during sepsis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/imunologia , Melanoma Experimental/complicações , Melanoma Experimental/imunologia , Sepse/complicações , Sepse/imunologia , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/imunologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Citocinas/sangue , Interferon gama/metabolismo , Neoplasias Pulmonares/sangue , Linfonodos/imunologia , Masculino , Melanoma Experimental/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Sepse/sangue , Sepse/mortalidade , Neoplasias Cutâneas/sangue , Baço/imunologia , Antígenos Thy-1/genética
16.
Am J Transplant ; 21(10): 3256-3267, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33756063

RESUMO

Belatacept confers increased patient and graft survival in renal transplant recipients relative to calcineurin inhibitors, but is associated with an increased rate of acute rejection. Recent immunophenotypic studies comparing pretransplant T cell phenotypes of patients who reject versus those who remain stable on belatacept identified three potential "risky" memory T cell subsets that potentially underlie belatacept-resistant rejection: CD4+ CD28+ TEM , CD8+ CD28null , and CD4+ CD57+ PD1- subsets. Here, we compared key phenotypic and functional aspects of these human memory T cell subsets, with the goal of identifying additional potential targets to modulate them. Results demonstrate that TIGIT, an increasingly well-appreciated immune checkpoint receptor, was expressed on all three risky memory T cell subsets in vitro and in vivo in the presence of belatacept. Coculture of human memory CD4+ and CD8+ T cells with an agonistic anti-TIGIT mAb significantly increased apoptotic cell death of all three risky memory T cell subsets. Mechanistically, TIGIT-mediated apoptosis of risky memory T cells was dependent on FOXP3+ Treg, suggesting that agonism of the TIGIT pathway increases FOXP3+ Treg suppression of human memory T cell populations. Overall, these data suggest that TIGIT agonism could represent a new therapeutic target to inhibit belatacept-resistant rejection during transplantation.


Assuntos
Memória Imunológica , Transplante de Rim , Abatacepte/uso terapêutico , Apoptose , Antígenos CD28 , Linfócitos T CD8-Positivos , Rejeição de Enxerto/etiologia , Humanos , Imunossupressores , Transplante de Rim/efeitos adversos , Receptores Imunológicos , Subpopulações de Linfócitos T
17.
iScience ; 24(2): 102093, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615199

RESUMO

Sepsis is a leading cause of morbidity and mortality associated with significant impairment in memory T cells. These changes include the upregulation of co-inhibitory markers, a decrease in functionality, and an increase in apoptosis. Due to recent studies describing IL-27 regulation of TIGIT and PD-1, we assessed whether IL-27 impacts these co-inhibitory molecules in sepsis. Based on these data, we hypothesized that IL-27 was responsible for T cell dysfunction during sepsis. Using the cecal ligation and puncture (CLP) sepsis model, we found that IL-27Rα was associated with the upregulation of TIGIT on memory CD4+ T cells following CLP. However, IL-27 was not associated with sepsis mortality.

18.
Neurobiol Dis ; 148: 105200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248237

RESUMO

Hypoxia-inducible factor-1α (HIF1α) is a major regulator of cellular adaptation to hypoxia and oxidative stress, and recent advances of prolyl-4-hydroxylase (P4H) inhibitors have produced powerful tools to stabilize HIF1α for clinical applications. However, whether HIF1α provokes or resists neonatal hypoxic-ischemic (HI) brain injury has not been established in previous studies. We hypothesize that systemic and brain-targeted HIF1α stabilization may have divergent effects. To test this notion, herein we compared the effects of GSK360A, a potent P4H inhibitor, in in-vitro oxygen-glucose deprivation (OGD) and in in-vivo neonatal HI via intracerebroventricular (ICV), intraperitoneal (IP), and intranasal (IN) drug-application routes. We found that GSK360A increased the erythropoietin (EPO), heme oxygenase-1 (HO1) and glucose transporter 1 (Glut1) transcripts, all HIF1α target-genes, and promoted the survival of neurons and oligodendrocytes after OGD. Neonatal HI insult stabilized HIF1α in the ipsilateral hemisphere for up to 24 h, and either ICV or IN delivery of GSK360A after HI increased the HIF1α target-gene transcripts and decreased brain damage. In contrast, IP-injection of GSK360A failed to reduce HI brain damage, but elevated the risk of mortality at high doses, which may relate to an increase of the kidney and plasma EPO, leukocytosis, and abundant vascular endothelial growth factor (VEGF) mRNAs in the brain. These results suggest that brain-targeted HIF1α-stabilization is a potential treatment of neonatal HI brain injury, while systemic P4H-inhibition may provoke unwanted adverse effects.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Quinolonas/farmacologia , Administração Intranasal , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/genética , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Glicina/farmacologia , Heme Oxigenase (Desciclizante)/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intraperitoneais , Injeções Intraventriculares , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos
19.
J Immunol ; 205(12): 3358-3371, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158954

RESUMO

Immune dysregulation during sepsis is mediated by an imbalance of T cell costimulatory and coinhibitory signaling. CD28 is downregulated during sepsis and is significantly altered on memory versus naive T cells. Thus, to study the role of CD28 during sepsis in a more physiologically relevant context, we developed a "memory mouse" model in which animals are subjected to pathogen infections to generate immunologic memory, followed by sepsis induction via cecal ligation and puncture. Using this system, we show that agonistic anti-CD28 treatment resulted in worsened survival in naive septic animals but conferred a significant survival advantage in immunologically experienced septic animals. Mechanistically, this differential response was driven by the ability of CD28 agonism to elicit IL-10 production from regulatory T cells uniquely in memory but not naive mice. Moreover, elevated IL-10 released by activated regulatory T cells in memory mice inhibited sepsis-induced T cell apoptosis via the antiapoptotic protein Bcl-xL. Together, these data demonstrate that immunologic experience is an important parameter that affects sepsis pathophysiology and can fundamentally change the outcome of modulating the CD28 pathway during sepsis. This study suggests that testing therapeutic strategies in immunologically experienced hosts may be one way to increase the physiologic relevance of rodent models in sepsis research.


Assuntos
Antígenos CD28 , Memória Imunológica , Interleucina-10/imunologia , Sepse/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/imunologia , Masculino , Camundongos , Proteína bcl-X/imunologia
20.
J Neurosci ; 40(49): 9386-9400, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127853

RESUMO

Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFκB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFα. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.SIGNIFICANCE STATEMENT In autism spectrum disorders (ASDs), prenatal infection or maternal immune activation (MIA) may act as a primer for multiple genetic and environmental factors to impair neurodevelopment. This study examined whether MIA cooperates with neonatal cerebral hypoxia ischemia to promote ASD-like aberrations in mice using a novel two-hit model. It was shown that the combination of MIA and neonatal hypoxia ischemia produces autistic-like behaviors in the offspring, and has synergistic effects in inducing neuroinflammation, monocytic infiltrates, synaptic defects, and perineuronal nets. Furthermore, genetic or pharmacological intervention of the MCP1-CCR2 chemoattractant pathway markedly reduced monocytic infiltrates, perineuronal nets, and autistic-like behaviors. These results suggest reciprocal escalation of immune and neonatal brain injury in a subset of ASD that may benefit from monocyte-targeted treatments.


Assuntos
Transtorno Autístico/imunologia , Transtorno Autístico/psicologia , Comportamento Animal , Deficiências do Desenvolvimento/imunologia , Deficiências do Desenvolvimento/psicologia , Monócitos/imunologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/psicologia , Feminino , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , NF-kappa B , Parvalbuminas/genética , Poli I-C , Densidade Pós-Sináptica , Gravidez , Transdução de Sinais , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...