Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(8): 080401, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683167

RESUMO

Quantum simulation of different exotic topological phases of quantum matter on a noisy intermediate-scale quantum (NISQ) processor is attracting growing interest. Here, we develop a one-dimensional 43-qubit superconducting quantum processor, named Chuang-tzu, to simulate and characterize emergent topological states. By engineering diagonal Aubry-André-Harper (AAH) models, we experimentally demonstrate the Hofstadter butterfly energy spectrum. Using Floquet engineering, we verify the existence of the topological zero modes in the commensurate off-diagonal AAH models, which have never been experimentally realized before. Remarkably, the qubit number over 40 in our quantum processor is large enough to capture the substantial topological features of a quantum system from its complex band structure, including Dirac points, the energy gap's closing, the difference between even and odd number of sites, and the distinction between edge and bulk states. Our results establish a versatile hybrid quantum simulation approach to exploring quantum topological systems in the NISQ era.

2.
J Phys Chem Lett ; 13(39): 9114-9121, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154018

RESUMO

Simulating response properties of molecules is crucial for interpreting experimental spectroscopies and accelerating materials design. However, it remains a long-standing computational challenge for electronic structure methods on classical computers. While quantum computers hold the promise of solving this problem more efficiently in the long run, existing quantum algorithms requiring deep quantum circuits are infeasible for near-term noisy quantum processors. Herein, we introduce a pragmatic variational quantum response (VQR) algorithm for response properties, which circumvents the need for deep quantum circuits. Using this algorithm, we report the first simulation of linear response properties of molecules including dynamic polarizabilities and absorption spectra on a superconducting quantum processor. Our results indicate that a large class of important dynamical properties, such as Green's functions, are within the reach of near-term quantum hardware using this algorithm in combination with suitable error mitigation techniques.

3.
Phys Rev Lett ; 128(15): 150501, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499907

RESUMO

Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterizes the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalization of the RSP with respect to nonlinear observables and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, we report the characterization of multiparticle entangled states generated during its nonlinear dynamics. First, selecting ten qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89_{-0.29}^{+0.28} dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...