Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(1): e202300878, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37934144

RESUMO

As biological enzymes regulate metabolic processes, alkaline phosphatase (ALP) is a critical diagnostic indicator associated with many diseases. To accurately measure the enzyme activity, nanozymactic materials can offer sensitive strategies for ALP detection. However, nanozymes often lack specific target binding sites, and the presence of common co-components, e. g., metal ions, may cause false-positive or false-negative results in enzyme activity determination. Herein, we developed a colorimetric assay for ALP detection using metal-free nanozymatic carbon dots (CDs). The ALP hydrolysis of pyrophosphate ions (PPi) to phosphate ions (Pi) induces a "turn-on" response based on the nanozyme activity. This PPi-induced inhibition mechanism is extensively studied via the Michaelis-Menten model, revealing that PPi acts as a noncompetitive inhibitor for CDs at a binding site distinct from the common nanozyme active site. With superior responses to ALP substrates, a highly sensitive and selective method is established for sensing ALP activity with a linear range of 0.010-0.200 U/L and a detection limit of 0.009 U/L. This finding explores the recognition and binding behavior of nanozymes, allowing for precise and reliable measurements even in complex samples, and represents a significant breakthrough for nanozyme-based assays in biological analysis.


Assuntos
Fosfatase Alcalina , Carbono , Fosfatase Alcalina/metabolismo , Carbono/química , Domínio Catalítico , Hidrólise , Metais , Corantes , Íons , Limite de Detecção , Colorimetria
2.
ACS Biomater Sci Eng ; 9(5): 2148-2155, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35156796

RESUMO

Graphene oxide (GO) has been widely used in biological sensing studies because of its excellent physical and chemical properties. In particular, the rich functional groups on the surface of GO can effectively enhance the bonding of biomolecules and serve as an efficient sensing substrate. However, when biomolecules are labeled with fluorescence, the GO interface affects the biomolecules by reducing the fluorescence properties and limiting their applications in biosensing. Here, we establish an annealed GO (aGO) substrate through the annealing process, which can effectively increase the bonding amount of a DNA probe because of the accumulation of oxygen atoms on the surface without significantly damaging the nanosheet structure. Furthermore, we prove that the aGO substrate can effectively maintain its fluorescence performance and stability by exposing more graphic domains. Overall, this study successfully verifies that GO's interface annealing modification can be used as an alternative innovative interface application in biosensing.


Assuntos
Grafite , Óxidos , Óxidos/química , Fluorescência
3.
Mater Today Bio ; 15: 100326, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35761844

RESUMO

In tissue engineering, foreign body reactions (FBRs) that may occur after the insertion of medical implants are a considerable challenge. Materials currently used in implants are mainly metals that are non-organic, and the lack of biocompatibility and absence of immune regulations may lead to fibrosis after long periods of implantation. Here, we introduce a highly biocompatible hybrid interface of graphene oxide (GO) and collagen type I (COL-I), where the topological nanostructure can effectively inhibit the differentiation of fibroblasts into myofibroblasts. The structure and roughness of this coating interface can be easily adjusted at the nanoscale level through changes in the GO concentration, thereby effectively inducing the polarization of macrophages to the M1 state without producing excessive amounts of pro-inflammatory factors. Compared to nanomaterials or the extracellular matrix as an anti-fibrotic interface, this hybrid bio-interface has superior mechanical strength, physical structures, and high inflammation. Evidenced by inorganic materials such as glass, titanium, and nitinol, GO-COL shows great potential for use in medical implants and cell-material interfaces.

4.
Mater Today Bio ; 14: 100253, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35464741

RESUMO

Retinal prostheses offer viable vision restoration therapy for patients with blindness. However, a critical requirement for maintaining the stable performance of electrical stimulation and signal transmission is the biocompatibility of the electrode interface. Here, we demonstrated a functionalized electrode-neuron biointerface composed of an annealed graphene oxide-collagen (aGO-COL) composite and neuronal cells. The aGO-COL exhibited an electroactive 3D crumpled surface structure and enhanced the differentiation efficiency of PC-12 â€‹cells. It is integrated into a photovoltaic self-powered retinal chip to develop a biohybrid retinal implant that facilitates biocompatibility and tissue regeneration. Moreover, aGO-COL micropatterns fabricated via 3D bioprinting can be used to create neuronal cell microarrays, which supports the possibility of retaining the high spatial resolution achieved through electrical stimulation of the retinal chip. This study paves the way for the next generation of biohybrid retinal implants based on biointerfaces.

5.
Mater Today Bio ; 13: 100182, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34917923

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most lethal chronic disease worldwide; however, the establishment of reliable in vitro models for exploring the biological mechanisms of COPD remains challenging. Here, we determined the differences in the expression and characteristics of the autophagic protein LC3B in normal and COPD human small airway epithelial cells and found that the nucleus of COPD cells obviously accumulated LC3B. We next established 3D human small airway tissues with distinct disease characteristics by regulating the biological microenvironment, extracellular matrix, and air-liquid interface culture methods. Using this biomimetic model, we found that LC3B affects the differentiation of COPD cells into basal, secretory, mucous, and ciliated cells. Moreover, although chloroquine and ivermectin effectively inhibited the expression of LC3B in the nucleus, chloroquine specifically maintained the performance of LC3B in cytoplasm, thereby contributing to the differentiation of ciliated cells and subsequent improvement in the beating functions of the cilia, whereas ivermectin only facilitated differentiation of goblet cells. We demonstrated that the autophagic mechanism of LC3B in the nucleus is one factor regulating the ciliary differentiation and function of COPD cells. Our innovative model can be used to further analyze the physiological mechanisms in the in vitro airway environment.

6.
Anal Chim Acta ; 1144: 158-174, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453793

RESUMO

Paper-based analytical devices possess desirable properties such as low cost, convenient production, and rapid output. These advantages over conventional analytical devices have attracted tremendous attention in recent years, and an abundance of fabrication techniques have been achieved with different designs. Related approaches are adopted by scientists and engineers from different research fields to create practical devices tailored for various applications. Among a diverse selection of strategies, paper-based analytical devices featuring enclosed channels can protect its contents from environmental harm, which is helpful in designing paper-based devices aimed toward practical use. However, superior properties of enclosed device designs have often been neglected when a paper-based platform is selected, and related discussion is still lacking in the field. To fill this empty space in the relevant literature, important issues are highlighted and recent research achievements are included in this article, which should have implication for scientists interested in sensing technology, analytical chemistry, material science, and miniaturized devices. For the convenience of reader's understanding, this article provides a general introduction to the basic properties and concepts of paper-based analytical devices. Firstly, commonly used fabrication strategies and detection methods are mentioned, with an in-depth emphasis on paper-based devices with enclosed channels, including breakthroughs in device types, thoughts on novel fabrication, and practical application examples. Subsequently, other important topics related to enclosed paper-based device design are summarized, and future challenges and opportunities in the field are also discussed.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32548105

RESUMO

Recent developments in epidemiology have confirmed that airborne particulates are directly associated with respiratory pathology and mortality. Although clinical studies have yielded evidence of the effects of many types of fine particulates on human health, it still does not have a complete understanding of how physiological reactions are caused nor to the changes and damages associated with cellular and molecular mechanisms. Currently, most health assessment studies of particulate matter (PM) are conducted through cell culture or animal experiments. The results of such experiments often do not correlate with clinical findings or actual human reactions, and they also cause difficulty when investigating the causes of air pollution and associated human health hazards, the analysis of biomarkers, and the development of future pollution control strategies. Microfluidic-based cell culture technology has considerable potential to expand the capabilities of conventional cell culture by providing high-precision measurement, considerably increasing the potential for the parallelization of cellular assays, ensuring inexpensive automation, and improving the response of the overall cell culture in a more physiologically relevant context. This review paper focuses on integrating the important respiratory health problems caused by air pollution today, as well as the development and application of biomimetic organ-on-a-chip technology. This more precise experimental model is expected to accelerate studies elucidating the effect of PM on the human body and to reveal new opportunities for breakthroughs in disease research and drug development.

8.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230996

RESUMO

Cancer has been one of the leading causes of death globally, with metastases and recurrences contributing to this result. The detection of circulating tumor cells (CTCs), which have been implicated as a major population of cells that is responsible for seeding and migration of tumor sites, could contribute to early detection of metastasis and recurrences, consequently increasing the chances of cure. This review article focuses on the current progress in microfluidics technology in CTCs diagnostics, extending to the use of nanomaterials and surface modification techniques for diagnostic applications, with an emphasis on the importance of integrating microchannels, nanomaterials, and surface modification techniques in the isolating and detecting of CTCs.


Assuntos
Separação Celular , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/sangue , Células Neoplásicas Circulantes/patologia , Contagem de Células , Humanos , Nanoestruturas/química , Neoplasias/patologia
9.
ACS Sens ; 5(5): 1314-1324, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32323526

RESUMO

The pyrophosphate ion (P2O74-, PPi) plays a critical role in various biological processes and acts as an essential indicator for physiological mechanism investigations and disease control monitoring. However, most of the currently available approaches for PPi species detection for practical usage still lack appropriate indicator generation, straightforward detection requirements, and operation convenience. In this study, a highly sensitive and selective PPi detection approach via the use of nanozymatic carbon dots (CDs) is introduced. This strategy eliminates the common need for metal ions in the detection process, where a direct indicator-PPi interaction is adopted to provide straightforward signal reports, and importantly, through a green indicator preparation. The preparation of this nanozymatic CDs' indicator utilizes an aqueous solution refluxing, employing galactose and histidine as the precursor materials. The mild conditions of the solution refluxing produce fluorescent CDs exhibiting peroxidase-mimic properties, which can catalyze the o-phenylenediamine oxidation under the presence of H2O2. The introduction of PPi species, interestingly, inhibits this process very efficiently, the extent of which can be colorimetrically monitored by the generated yellow product 2,3-diaminophenazine. Spectroscopic results point to CD surface functional groups' selective binding toward PPi species, which severely interferes with the electron transfer process in the enzymatic catalysis. Relying on this CD peroxidase-mimetic property inhibition, sensitive and selective recognition of PPi reaches a detection limit of 4.29 nM, enabling practical usage in complex matrixes. Owing to the superior compatibility and high stability of nanozymatic CDs, they can also be inkjet-printed on paper-based devices to create a portable and convenient platform for PPi detection. Both the solution and the paper-device-based selective recognitions confirm this unique and robust metal-free inhibitive PPi detection, which is supported by a convenient green preparation of nanozymatic CDs.


Assuntos
Carbono , Pontos Quânticos , Colorimetria , Difosfatos , Peróxido de Hidrogênio , Espectrometria de Fluorescência
10.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816919

RESUMO

Liquid biopsies use blood or urine as test samples, which are able to be continuously collected in a non-invasive manner. The analysis of cancer-related biomarkers such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA, and exosomes provides important information in early cancer diagnosis, tumor metastasis detection, and postoperative recurrence monitoring assist with clinical diagnosis. However, low concentrations of some tumor markers, such as CTCs, ctDNA, and microRNA, in the blood limit its applications in clinical detection and analysis. Nanomaterials based on graphene oxide have good physicochemical properties and are now widely used in biomedical detection technologies. These materials have properties including good hydrophilicity, mechanical flexibility, electrical conductivity, biocompatibility, and optical performance. Moreover, utilizing graphene oxide as a biosensor interface has effectively improved the sensitivity and specificity of biosensors for cancer detection. In this review, we discuss various cancer detection technologies regarding graphene oxide and discuss the prospects and challenges of this technology.

11.
ACS Appl Mater Interfaces ; 11(10): 10380-10388, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30761896

RESUMO

Flexible pressure sensors have attracted increasing interest because of their potential applications on wearable sensing devices for human-machine interface connections, but challenges regarding material cost, fabrication robustness, signal transduction, sensitivity improvement, detection range, and operation convenience still need to be overcome. Herein, with a simple, low-cost, and scalable approach, a flexible and wearable pressure-sensing device fabricated by utilizing filter paper as the solid support, poly(3,4-ethylenedioxythiophene) to enhance conductivity, and silver nanoparticles to provide a rougher surface is introduced. Sandwiching and laminating composite material layers with two thermoplastic polypropylene films lead to robust integration of sensing devices, where assembling four layers of composite materials results in the best sensitivity toward applied pressure. This practical pressure-sensing device possessing properties such as high sensitivity of 0.119 kPa-1, high durability of 2000 operation cycles, and an ultralow energy consumption level of 10-5 W is a promising candidate for contriving point-of-care wearable electronic devices and applying it to human-machine interface connections.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas/química , Pressão , Interfaces Cérebro-Computador , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Humanos , Nanotubos de Carbono/química , Polímeros/química , Prata/química , Dispositivos Eletrônicos Vestíveis
12.
ACS Appl Mater Interfaces ; 10(48): 41814-41823, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30412374

RESUMO

Local molecular environment governs material interface properties, especially the substrate's exposing behavior and overall functionality expression. Although current techniques can provide efficient surface property modification, challenges in molecule spatial distribution and composition controls limited the generation of homogeneous and finely tunable molecular environment. In this study, Au-thiolate rupturing operation in chemical lift-off lithography (CLL) is used to manipulate the substrate interface molecular environment. The creation of randomly distributed artificial self-assembled monolayer defects generates vacancies for substrate property modification through back-insertion of molecules with opposite functionalities. Surface wettability adjustment is utilized as an example, where well-controllable molecule distribution provides finely tunable substrate affinity toward liquids with different physical properties. The distinct property difference between two surface regions assists microdroplet formation when liquids flow through, not only water solution but also low-surface-tension organic liquids. These microdroplet arrays become a template to guide material assembly in its formation process and act as pH-sensitive platforms for high-throughput detection. Furthermore, the tunability of the molecular pattern in this approach helps minimize the coffee-ring effect and the sweet-spot issue in matrix-assisted laser desorption/ionization mass spectrometry. Two-dimensional molecular manipulation in the CLL operation, therefore, holds the capability toward controlling homogeneous material surface property and toward exhibiting behavior adjustments.

13.
Anal Chim Acta ; 1015: 1-7, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29530247

RESUMO

Aiming to overcome the obstacles of power supply requirement and chip usefulness in practice, a low-cost and convenient portable electrochemical sensing device is introduced for the first time, featuring bipolar electrode system, LED read-out, laminated paper-based devices, and low-voltage button cells. The electric circuits of this practical device are constructed on laminating films with copper and conductive carbon tapes, and the reservoirs facilitating chemical reactions are made with chromatography paper. The device is sensitive to electrochemical responses, validated by the demonstrative hydrogen peroxide and enzyme-assisted glucose detection. The business-card-size chip achieves sensitive analyte detection by naked eyes as well as further image processing in both laboratory samples and human serum samples testing, featuring detection limit as low as 1.79 µM and a dynamic range from 10 µM to 10 mM. This new practical design of point-of-care sensing chip entails the properties of facile fabrication, simple usage, high robustness, low power consumption, and accurate sensing showing the attainability of fabricating a useful and portable analytical device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Papel , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Glucose/análise , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/análise , Sistemas Automatizados de Assistência Junto ao Leito
14.
Beilstein J Nanotechnol ; 9: 311-320, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441274

RESUMO

The creation of bioactive substrates requires an appropriate interface molecular environment control and adequate biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable pattern feature and size, large-area fabrication, high resolution and fidelity control, and the ability to functionalize versatile bioarrays. With the interface-contact-induced reaction, a preformed alkanethiol self-assembled monolayer on a Au surface is ruptured and a unique defect-rich diluted matrix is created. This post lift-off region is found to be suitable for insertion of a variety of biological probes, which allows for the creation of different types of bioactive substrates. Depending on the modifications to the experimental conditions, the processes of direct probe insertion, molecular structure change-required recognition, and bulky biological species binding are all accomplished with minimum nonspecific adhesion. Furthermore, multiplexed arrays via the integration of microfluidics are also achieved, which enables diverse applications of as-prepared substrates. By embracing the properties of well-tunable pattern feature dimension and geometry, great local molecular environment control, and wafer-scale fabrication characteristics, this chemical lift-off process has advanced conventional bioactive substrate fabrication into a more convenient route.

15.
Nanomaterials (Basel) ; 8(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29425154

RESUMO

Paper-based analytical devices are an emerging class of lightweight and simple-to-use analytical platform. However, challenges such as instrumental requirements and chemical reagents durability, represent a barrier for less-developed countries and markets. Herein, we report an advanced laminated device using red emitting copper nanocluster and RGB digital analysis for signal improvement. Upon RGB system assistance, the device signal-to-background ratio and the calibration sensitivity are highly enhanced under a filter-free setup. In addition, the calibration sensitivity, limit of detection, and coefficient of determination are on par with those determined by instrumental fluorescence analysis. Moreover, the limitation of using oxidation-susceptible fluorescent nanomaterials is overcome by the introduction of protecting tape barriers, antioxidative sheets, and lamination enclosing. The robustness of device is highly advanced, and the durability is prolonged to more than tenfold.

16.
Nanomaterials (Basel) ; 8(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382044

RESUMO

Nanoparticle alignment on the substrate attracts considerable attention due to its wide application in different fields, such as mechanical control, small size electronics, bio/chemical sensing, molecular manipulation, and energy harvesting. However, precise nanoparticle positioning and deposition control with high fidelity are still challenging. Herein, a straightforward strategy for high quality nanoparticle-alignment by chemical lift-off lithography (CLL) is demonstrated. This technique creates high resolution self-assembled monolayer (SAM) chemical patterns on gold substrates, enabling nanoparticle-selective deposition and precise alignment. The fabricated nanoparticle arrangement geometries and dimensions are well-controllable in a large area. With proper nanoparticle surface functionality control and adequate substrate molecular manipulation, well-defined nanoparticle arrays with single-particle-wide alignment resolution are achieved.

17.
Chem Commun (Camb) ; 54(33): 4100-4103, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464248

RESUMO

Programmable surface-patterned functional DNA density is achieved via manipulation of molecular-level defects through chemical lift-off lithography. Artificial SAM defects are well-tunable by a contact-induced reaction, enabling molecular environment guidance and DNA insertion to be spatially and quantitatively addressable. This straightforward molecular density control creates an advanced avenue toward fabricating multiplexed bioactive substrates.


Assuntos
DNA/química , Impressão , Adenosina/química , Cocaína/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Fluorescência , Ouro/química , HIV-1/genética , Hibridização de Ácido Nucleico , Propriedades de Superfície
18.
Nanoscale ; 10(7): 3191-3197, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29372203

RESUMO

The classical alkanethiol post-passivation can prevent nonspecific binding of nucleotide bases onto supporting substrates and help aptamers transition from a "lying down" to a "standing up" orientation. However, the surface probes display lower binding affinity towards targets than those in bulk solutions due to unsatisfied hybridization spaces on the alkanethiol passivated substrate. To overcome this challenge, an artificial defect-rich matrix possessing an aptamer "self-standing" property created by chemical lift-off lithography (CLL) is demonstrated. This approach provided artificial defects on a hydroxyl-terminated alkanethiol self-assembled monolayer (SAM), which allowed the insertion of thiolated aptamers. The diluted surface molecular environment assisted aptamers not only to "self-stand" on the surface, but also to separate from each other, providing a suitable surface aptamer density and sufficient space for capturing targets. With this approach, the binding affinity of the aptamer towards a target was comparable to solution-type probes, showing higher recognition efficiency than that in conventional methods.

19.
ACS Sens ; 2(3): 354-363, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28723203

RESUMO

Carbon dots are admirable fluorescent nanomaterials due to their low cost, high photostability, excellent biocompatibility, and environmental friendliness. Most conventional carbon dot fabrication approaches produce single-colored fluorescent material in the preparation process; different methods are therefore required to synthesize distinct carbon dots for specific optical applications. In this study, carbon dots carrying different emission colors are prepared through a one-step refluxing process. The emission of these materials can be well-tuned by sodium hydroxide content in the precursor solution. The carbon dots produced are used as sensing probes based on the spectrofluorometric inner filter effect for target molecule detection. Three sensing categories that combine carbon dots and inner filter effect are demonstrated, including direct, metal nanoparticle-assisted, and enzymatic reaction-supported detection. Caffeine, melamine, and fenitrothion are selected as targets to demonstrate the strategies, respectively. These multifunctional carbon dot-based sensors achieve comparable sensitivity toward analytes with a much more convenient preparation route.

20.
Anal Chim Acta ; 963: 93-98, 2017 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-28335980

RESUMO

Polymer film incorporated paper-based devices show advantages in simplicity and rugged backing. However, their applications are restricted by the high fluorescence background interference of conventional laminating pouches. Herein, we report a straightforward approach for minimal fluorescence background device fabrication, in which filter paper was shaped and laminated in between two biaxially oriented polypropylene (OPP) and polyvinyl butyral (PVB) composite films. This composite film provides mechanical strength for enhanced device durability, protection from environmental contamination, and prevents reagent degradation. This approach was tested by the determination of copper ions with a fluorescent probe, while the detection of glucose was used to illustrate the improved device durability. Our results show that lamination by the polymer composite lengthens device lifetime, while allowing for fluorescence detection methods combination with greatly reduced fluorescent background widely present in commercially available lamination pouches. By the combination of rapid device prototyping with low cost materials, we believe that this composite design would further expand the potential of paper-based devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...