Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049373

RESUMO

Ammonia has the advantages of being easy to liquefy, easy to store, and having a high hydrogen content of 17.3 wt%, which can be produced without COx through an ammonia decomposition using an appropriate catalyst. In this paper, a series of FeCr bimetallic oxide nanocatalysts with a uniform morphology and regulated composition were synthesized by the urea two-step hydrolysis method, which exhibited the high-performance decomposition of ammonia. The effects of different FeCr metal ratios on the catalyst particle size, morphology, and crystal phase were investigated. The Fe0.75Cr0.25 sample exhibited the highest catalytic activity, with an ammonia conversion of nearly 100% at 650 °C. The dual metal catalysts clearly outperformed the single metal samples in terms of their catalytic performance. Besides XRD, XPS, and SEM being used as the means of the conventional characterization, the local structural changes of the FeCr metal oxide catalysts in the catalytic ammonia decomposition were investigated by XAFS. It was determined that the Fe metal and FeNx of the bcc structure were the active species of the ammonia-decomposing catalyst. The addition of Cr successfully prevented the Fe from sintering at high temperatures, which is more favorable for the formation of stable metal nitrides, promoting the continuous decomposition of ammonia and improving the decomposition activity of the ammonia. This work reveals the internal relationship between the phase and structural changes and their catalytic activity, identifies the active catalytic phase, thus guiding the design and synthesis of catalysts for ammonia decomposition, and excavates the application value of transition-metal-based nanocomposites in industrial catalysis.

2.
Dalton Trans ; 47(42): 14938-14944, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30207346

RESUMO

Hydrotalcite-like compounds (HTlcs) are promising supports or catalyst precursors for heterogeneous catalysts. Herein, MgAl-HTlcs-supported Pd catalyst was fabricated, and two Pd catalysts supported on Mg(OH)2 and Al(OH)3 were prepared for comparison. The presence of hydroxyl groups (OH-) in the support is important for obtaining uniform Pd nanoparticles with small sizes. We found that Pdn+ species are more active than Pd0 in low temperature CO oxidation due to their lower barrier in CO activation. The Pd/MgAl-HT catalyst shows the most stable Pdn+ at a temperature lower than 90 °C, leading to the highest catalytic activity towards CO oxidation. Pdn+ in the Pd/Al(OH)3 catalyst is more stable than that in Pd/Mg(OH)2 at low temperature, which is ascribed to its smaller temperature hysteresis (Thysteresis) between the oxidation and re-reduction cycles. The effect of hydroxyl groups on stabilizing Pd species is related to the stability of Pd catalyst in CO oxidation reaction.

3.
Chemphyschem ; 19(12): 1448-1455, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29539184

RESUMO

CuO/CeO2 is a kind of promising catalysts for the water-gas shift (WGS) reaction. Efforts were put in to improve its performance through modification of CeO2 support. In this study, portions of CeO2 prepared by a co-precipitation method were separately annealed at 300 °C in air, under vacuum and with H2 , and were used as supports for the fabrication of CuO/CeO2 catalysts. The physicochemical properties of the catalysts were characterized by X-ray diffraction, N2 -physisorption, inductively coupled plasma, Raman spectroscopy, CO2 temperature-programmed desorption, and H2 temperature-programmed reduction techniques. The relation between catalytic performances and physicochemical properties of the CuO/CeO2 catalysts were discussed. Among the three catalysts, the one with CuO supported on H2 -reduced CeO2 shows the highest catalytic activity, mainly due to strong CuO-CeO2 synergetic interaction and high concentration of Frenkel-type oxygen vacancies. The superior catalytic activities can also be attributed to the Cu0 crystals of small size and the oxygen vacancies in non-stoichiometric CeO2-x .

4.
Dalton Trans ; 46(48): 16967-16972, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29177356

RESUMO

Nanotubes have been the focus of vital efforts in the catalysis community because of their unique properties. However, owing to the limitations of synthetic methods, most multi-element oxides have rarely been fabricated. In this study, we design a gradient electrospinning method for the controllable synthesis of Mn-Fe/CeO2 nanocatalysts and their application in the combustion of propane and methane. The strategy is rational, and the nanostructure of Mn-Fe/CeO2 can be tuned by simply adjusting the weight ratio of polyvinyl pyrrolidone (PVP)/polyacrylonitrile (PAN) during the electrospinning process. Benefitting from its unique structural feature, propane and methane conversions in hollow tubular Mn-Fe/CeO2-P1 (mPVP : mPAN = 1 : 1) are more than 90% at 382 and 411 °C, respectively. The superior propane oxidation performance in Mn-Fe/CeO2-P1 is associated with its hollow tubular structure, high surface oxygen vacancies and excellent low-temperature reducibility.

5.
Dalton Trans ; 40(37): 9566-70, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21847472

RESUMO

In this work, we study the enhancement of Raman signals and photocatalytic activity of Ag/ZnO heterojunctions with an Ag content of 1 at.%, which were synthesized by photochemical deposition of Ag nanoparticles onto pre-synthesized ZnO nanorods. A strong interaction between Ag and ZnO nanocrystals were evidenced by XPS and UV-vis spectroscopy. The binding energy of Ag nanoparticles shifts toward lower energy compared to that of pure Ag nanoparticles, revealing that electrons transfer from Ag to the ZnO nanocrystals. The red shift of the plasmon absorption peak of Ag nanoparticles in Ag/ZnO heterojunctions further confirms the strong interaction between the two components. This strong interaction, arising from the coupling between Ag and ZnO nanocrystals, is responsible for the enhancement of Raman signals and photocatalytic activity of the Ag/ZnO heterojunctions.

6.
Inorg Chem ; 48(5): 1819-25, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235945

RESUMO

A network-structured SnO(2)/ZnO heterojunction nanocatalyst with high photocatalytic activity was successfully synthesized through a simple two-step solvothermal method. The as-synthesized samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) physical adsorption, and UV-vis spectroscopy. The results show that the SnO(2)/ZnO sample with a molar ratio of Sn/Zn = 1 is a mesoporous composite material composed of SnO(2) and ZnO. The photocatalytic activity of SnO(2)/ZnO heterojunction nanocatalysts for the degradation of methyl orange is much higher than those of solvothermally synthesized SnO(2) and ZnO samples, which can be attributed to the SnO(2)-ZnO heterojunction, the pore structure, and higher Brunauer-Emmett-Teller (BET) surface area of the sample: (1) The SnO(2)-ZnO heterojunction improves the separation of photogenerated electron-hole pairs due to the potential energy differences between SnO(2) and ZnO, thus enhancing the photocatalytic activity. (2) The SnO(2)/ZnO sample might possess more surface reaction sites and adsorb and transport more dye molecules due to the higher BET surface area and many pore channels, also leading to higher photocatalytic activity.


Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Compostos de Estanho/química , Óxido de Zinco/química , Catálise , Espectrofotometria Ultravioleta , Propriedades de Superfície , Difração de Raios X
7.
Inorg Chem ; 46(16): 6675-82, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17622132

RESUMO

Low-dimensional ZnO nanocrystals with controlled size, aspect ratio, and oxygen defects (e.g., type and concentration) are successfully prepared through simple solvothermal and thermal treatment methods. The structure of the as-synthesized samples is characterized by XRD, N2 physical adsorption, TEM, and IR and XPS spectra. The results show that the aspect ratio and size of the as-synthesized ZnO nanocrystals increase with increasing [OH-]/[Zn2+]; the morphology evolves from nanorod to nanoparticle with an increase in the annealing temperature; the BET surface areas of the corresponding samples decrease during these processes, respectively; and different oxygen defects, which are likely to be oxygen vacancy (Vo**) and interstitial oxygen (Oi''), are formed in our experiments accordingly. With evolution of the structure, IR absorption bands and visible photoluminescence emission peaks of the synthesized ZnO nanocrystals shift and split, which is ascribed to the change of oxygen defects. In addition, it is found that the photocatalytic activity of the synthesized ZnO nanocrystals is mainly dependent on the type and concentration of oxygen defects. The relationship of structure-property and the possible photocatalytic mechanism are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...