Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3534, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864155

RESUMO

The attraction between unequally sized like magnetic poles is characterized herein. Finite element analysis (FEA) simulation has verified that attraction can occur between like poles. Between two unequally sized like poles with various dimensions and alignments, a turning point (TP) appears on the curves of force vs. distance between them, which is caused by the localized demagnetization (LD). The LD plays a role far before the distance between the poles reduces to the TP. The LD area may have a changed polarity, making the attraction possible and not in violation of basic laws of magnetism. Here, the LD levels have been determined using FEA simulation, and the factors affecting the LD have been explored, including the geometry, the linearity of the BH curve, and the alignment of the magnet pairs. Novel devices can be designed with attraction between the centers of such like poles and repulsion when off-center.

2.
Sci Rep ; 11(1): 12555, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131203

RESUMO

This investigation reveals the mystery of the cases where magnetic like poles attract each other, and unlike poles repel one another. It is identified that for two unequally sized like poles, the pole with a higher Pc (permeance coefficient) causes a localized demagnetization (LD) to the pole with a lower Pc. If the LD is large enough, the polarity of a localized area can be reversed, resulting in an attraction between these two like poles in the LD area in a small gap. Two unusual behaviors are observed: (1) an inflection point IP appears on the force vs gap curves of all the unequally sized like poles since they have different Pc. Normally, the like poles' repelling force increases when the gap decreases, but this IP results in nonmonotonic curves, even an attractive force in a small gap; (2) for some NdFeB magnets with a low coercivity and nonlinear B-H curve in the 2nd quadrant, a repulsion can occur for these unequal sized unlike poles, after previously pairing with their like poles that left an unrecoverable LD and reversed polarity area. The relationship of the LD, the Pc ratio, and the B-H curve are also explored in this paper.

3.
Adv Mater ; 23(7): 821-42, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21294168

RESUMO

A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed.


Assuntos
Fontes Geradoras de Energia , Magnetismo/instrumentação , Fontes Geradoras de Energia/economia , Dureza , Magnetismo/economia , Magnetismo/tendências , Nanotecnologia/economia , Refrigeração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...