Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Nat Struct Mol Biol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565696

RESUMO

The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gßγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gßγ complexes in the presence of substrates/analogs, revealing two Gßγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gßγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gßγ binding sites and interdomain contacts altered by Gßγ binding suggest that Gßγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gßγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.

2.
Nat Struct Mol Biol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589608

RESUMO

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein, Gαs, but their response to Gßγ regulation is isoform specific. In the present study, we report cryo-electron microscope structures of ligand-free AC5 in complex with Gßγ and a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. Gain-of-function mutations in AC5 associated with human familial dyskinesia are located at the interface of AC5 with Gßγ and show reduced conditional activation by Gßγ, emphasizing the importance of the observed interaction for motor function in humans. We propose a molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core. As our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.

3.
Lung Cancer ; 190: 107533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520909

RESUMO

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Medicina de Precisão/métodos , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pulmão , Organoides/patologia , Microambiente Tumoral
4.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37745379

RESUMO

PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and the heterotrimeric Gßγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH-DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH-DEP1 and PH-4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.

5.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848444

RESUMO

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Assuntos
Antígeno CD47 , Macrófagos , Metástase Neoplásica , Fagocitose , Proteínas Proto-Oncogênicas c-myc , Evasão Tumoral , Humanos , Masculino , Proteínas de Transporte , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Transdução de Sinais , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Metástase Neoplásica/genética , Metástase Neoplásica/imunologia , Células Tumorais Cultivadas
6.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659081

RESUMO

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Células Endoteliais , Transdução de Sinais , Diferenciação Celular , Microambiente Tumoral , Linhagem Celular Tumoral
7.
Materials (Basel) ; 16(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37763470

RESUMO

Refractory high-entropy alloys (RHEAs) are among the promising candidates for the design of structural materials in advanced nuclear energy systems. The effects of Cr, V, Ta, and Ti elements and ball milling on the microstructural evolution and mechanical properties of model RHEAs were investigated. The results show that W-rich BCC1 and Ta-rich BCC2 solid solution phases were generated after a long milling duration. After high-temperature sintering, the (Cr, Ta)-rich phase associated with the Laves phase was observed in the Cr-containing model RHEAs. In addition, a high level of Ti, Ta, and V contents promoted the in situ formation of oxide particles in the alloys. Complex TiTa2O7 and Ta2VO6 oxide phases were identified by TEM, which suggests a solid-state reaction of Ti-O, Ta-O, and V-O subjected to high-energy ball milling. The oxide particles are uniformly dispersed in the BCC matrix, which can result in dispersion strengthening and the enhancement of mechanical properties.

8.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205329

RESUMO

The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gßγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gßγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gßγ complexes in the presence of various substrates/analogs, revealing two distinct Gßγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gßγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gßγ binding sites and interdomain contacts that change upon Gßγ binding suggest that Gßγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gßγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.

9.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205557

RESUMO

The nine different membrane-anchored adenylyl cyclase isoforms (AC1-9) in mammals are stimulated by the heterotrimeric G protein Gαs, but their response to Gßγ regulation is isoform-specific. For example, AC5 is conditionally activated by Gßγ. Here, we report cryo-EM structures of ligand-free AC5 in complex with Gßγ and of a dimeric form of AC5 that could be involved in its regulation. Gßγ binds to a coiled-coil domain that links the AC transmembrane region to its catalytic core as well as to a region (C1b) that is known to be a hub for isoform-specific regulation. We confirmed the Gßγ interaction with both purified proteins and cell-based assays. The interface with Gßγ involves AC5 residues that are subject to gain-of-function mutations in humans with familial dyskinesia, indicating that the observed interaction is important for motor function. A molecular mechanism wherein Gßγ either prevents dimerization of AC5 or allosterically modulates the coiled-coil domain, and hence the catalytic core, is proposed. Because our mechanistic understanding of how individual AC isoforms are uniquely regulated is limited, studies such as this may provide new avenues for isoform-specific drug development.

10.
Nat Commun ; 14(1): 2528, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137912

RESUMO

Oxidized cysteine residues are highly reactive and can form functional covalent conjugates, of which the allosteric redox switch formed by the lysine-cysteine NOS bridge is an example. Here, we report a noncanonical FAD-dependent enzyme Orf1 that adds a glycine-derived N-formimidoyl group to glycinothricin to form the antibiotic BD-12. X-ray crystallography was used to investigate this complex enzymatic process, which showed Orf1 has two substrate-binding sites that sit 13.5 Å apart unlike canonical FAD-dependent oxidoreductases. One site could accommodate glycine and the other glycinothricin or glycylthricin. Moreover, an intermediate-enzyme adduct with a NOS-covalent linkage was observed in the later site, where it acts as a two-scissile-bond linkage facilitating nucleophilic addition and cofactor-free decarboxylation. The chain length of nucleophilic acceptors vies with bond cleavage sites at either N-O or O-S accounting for N-formimidoylation or N-iminoacetylation. The resultant product is no longer sensitive to aminoglycoside-modifying enzymes, a strategy that antibiotic-producing species employ to counter drug resistance in competing species.


Assuntos
Aminoglicosídeos , Cisteína , Cisteína/química , Ligantes , Sítios de Ligação , Antibacterianos , Cristalografia por Raios X , Glicina
11.
Cancer Med ; 12(7): 8970-8980, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583228

RESUMO

BACKGROUND: Bladder tumor-infiltrating CD56bright NK cells are more tumor cytotoxic than their CD56dim counterparts. Identification of NK cell subsets is labor-intensive and has limited utility in the clinical setting. Here, we sought to identify a surrogate marker of bladder CD56bright NK cells and to test its prognostic significance. METHODS: CD56bright and CD56dim NK cells were characterized with the multiparametric flow (n = 20) and mass cytometry (n = 21) in human bladder tumors. Transcriptome data from bladder tumors (n = 351) profiled by The Cancer Genome Atlas (TCGA) were analyzed. The expression levels of individual markers in intratumoral CD56bright and CD56dim NK cells were visualized in tSNE plots. Expressions of activation markers were also compared between Killer Cell Lectin-Like Receptor Subfamily F Member 1 (KLRF1)+ and KLRF1- NK cells. RESULTS: Intratumoral CD56bright NK cells displayed a more activated phenotype compared to the CD56dim subset. Multiple intratumoral cell types expressed CD56, including bladder tumor cells and nonspecific intratumoral CD56 expression was associated with worse patient survival. Thus, an alternative to CD56 as a marker of CD56bright NK cells was sought. The activation receptor KLRF1 was significantly increased on CD56bright but not on CD56dim NK cells. Intratumoral KLRF1+ NK cells were more activated and expressed higher levels of activation molecules compared with KLRF1- NK cells, analogous to the distinct effector function of NK cells across CD56 expression. High intratumoral KLRF1 was associated with improved recurrence-free survival (hazard ratio [HR] 0.53, p = 0.01), cancer-specific survival (HR 0.47, p = 0.02), and overall survival (HR 0.54, p = 0.02) on multivariable analyses that adjusted for clinical and pathologic variables. CONCLUSIONS: KLRF1 is a promising prognostic marker in bladder cancer and may guide treatment decisions upon validation.


Assuntos
Células Matadoras Naturais , Neoplasias da Bexiga Urinária , Humanos , Células Matadoras Naturais/metabolismo , Biomarcadores/metabolismo , Fenótipo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077452

RESUMO

Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD.


Assuntos
Autofagia , Hepatopatias , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/metabolismo , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
13.
J Gastroenterol ; 57(11): 913-925, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35976494

RESUMO

BACKGROUND: Although we know the key role of gut dysbiosis in nonalcoholic fatty liver disease (NAFLD), it remains unclear what microbe(s) are responsible. This study aims to identify the microbes that cause NAFLD. METHODS: C57BL/6JNarl male mice fed a high-fat diet (HFD) were orally administered Lactobacillus reuteri (L. reuteri) or Lactobacillus rhamnosus GG plus Bifidobacterium animalis subsp. lactis BB12 (LGG plus BB12). Their fecal microbiomes identified by 16S rRNA sequencing were correlated with the severity of fatty liver. We then used a human cohort to confirm the role of the microbe(s). The HFD-fed mice were administrated with the identified bacterium, Desulfovibrio. The histopathological changes in the liver and ileum were analyzed. RESULTS: Lactobacillus and Bifidobacterium improved hepatic steatosis and fibrosis in HFD-fed mice, which was related to the decreased abundance of Desulfovibrio in feces. Further human study confirmed the amount of D. piger in the fecal microbiota of obese children with NAFLD was increased. We then administered D. piger and found aggravated hepatic steatosis and fibrosis in HFD-fed mice. Hepatic expression of CD36 was significantly increased in HFD-fed mice gavaged with D. piger. In HepG2 cells, overexpression of CD36 increased lipid droplets, whereas knockdown of CD36 decreased lipid droplets. HFD-fed mice gavaged with D. piger had a decrease in the villus length, crypt depth, and zonula occludens-1 density in the ileum tissue. CONCLUSIONS: Our findings provide novel insights into the role of Desulfovibrio dysregulation in NAFLD. Modulation of Desulfovibrio may be a potential target for the treatment of NAFLD.


Assuntos
Desulfovibrio , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Obesidade Infantil , Criança , Masculino , Humanos , Camundongos , Animais , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Ribossômico 16S , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Cirrose Hepática/patologia , Desulfovibrio/genética
14.
Proc Natl Acad Sci U S A ; 119(30): e2114119119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867819

RESUMO

Alphaviruses can cause severe human arthritis and encephalitis. During virus infection, structural changes of viral glycoproteins in the acidified endosome trigger virus-host membrane fusion for delivery of the capsid core and RNA genome into the cytosol to initiate virus translation and replication. However, mechanisms by which E1 and E2 glycoproteins rearrange in this process remain unknown. Here, we investigate prefusion cryoelectron microscopy (cryo-EM) structures of eastern equine encephalitis virus (EEEV) under acidic conditions. With models fitted into the low-pH cryo-EM maps, we suggest that E2 dissociates from E1, accompanied by a rotation (∼60°) of the E2-B domain (E2-B) to expose E1 fusion loops. Cryo-EM reconstructions of EEEV bound to a protective antibody at acidic and neutral pH suggest that stabilization of E2-B prevents dissociation of E2 from E1. These findings reveal conformational changes of the glycoprotein spikes in the acidified host endosome. Stabilization of E2-B may provide a strategy for antiviral agent development.


Assuntos
Vírus da Encefalite Equina do Leste , Proteínas do Envelope Viral , Antivirais/química , Antivirais/farmacologia , Microscopia Crioeletrônica , Vírus da Encefalite Equina do Leste/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/química
15.
J Biol Chem ; 298(8): 102209, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779635

RESUMO

Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Serina-Treonina Quinases/química , Fatores de Troca de Nucleotídeo Guanina Rho/química , Animais , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Neoplasias Uveais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-35206218

RESUMO

Water-soluble anions and suspended fine particles have negative impacts on ecosystems and human health, which is a current research hotspot. In this study, coastal suburb, coastal urban area, coastal tourist area, and coastal industrial area were explored to study the spatiotemporal variation and influencing factors of water-soluble anions and total suspended particles (TSP) in Zhanjiang atmosphere. In addition, on-site monitoring, laboratory testing, and analysis were used to identify the difference of each pollutant component at the sampling stations. The results showed that the average concentrations of Cl-, NO3-, SO42-, PO43-, and TSP were 29.8 µg/m3, 19.6 µg/m3, 45.6 µg/m3, 13.5 µg/m3, and 0.28 mg/m3, respectively. The concentration of Cl-, NO3-, PO43-, and atmospheric TSP were the highest in coastal urban area, while the concentration of SO42- was the highest in coastal industrial area. Moreover, there were significantly seasonal differences in the concentration of various pollutants (p < 0.05). Cl- and SO42- were high in summer, and NO3- and TSP were high in winter. Cl-, SO42-, PO43-, and TSP had significant correlations with meteorological elements (temperature, relative humidity, atmospheric pressure, and wind speed). Besides, the results showed the areas with the most serious air pollution were coastal urban area and coastal industrial area. Moreover, the exhaust emissions from vehicles, urban enterprise emissions, and seawater evaporation were responsible for the serious air pollution in coastal urban area. It provided baseline information for the coastal atmospheric environment quality in Zhanjiang coastal city, which was critical to the mitigation strategies for the emission sources of air pollutants in the future.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Ânions/análise , Atmosfera/análise , China , Ecossistema , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estações do Ano
17.
Mol Cancer Res ; 20(1): 62-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610962

RESUMO

Although the Sonic hedgehog (SHH) signaling pathway has been implicated in promoting malignant phenotypes of prostate cancer, details on how it is activated and exerts its oncogenic role during prostate cancer development and progression is less clear. Here, we show that GLI3, a key SHH pathway effector, is transcriptionally upregulated during androgen deprivation and posttranslationally stabilized in prostate cancer cells by mutation of speckle-type POZ protein (SPOP). GLI3 is a substrate of SPOP-mediated proteasomal degradation in prostate cancer cells and prostate cancer driver mutations in SPOP abrogate GLI3 degradation. Functionally, GLI3 is necessary and sufficient for the growth and migration of androgen receptor (AR)-positive prostate cancer cells, particularly under androgen-depleted conditions. Importantly, we demonstrate that GLI3 physically interacts and functionally cooperates with AR to enrich an AR-dependent gene expression program leading to castration-resistant growth of xenografted prostate tumors. Finally, we identify an AR/GLI3 coregulated gene signature that is highly correlated with castration-resistant metastatic prostate cancer and predictive of disease recurrence. Together, these findings reveal that hyperactivated GLI3 promotes castration-resistant growth of prostate cancer and provide a rationale for therapeutic targeting of GLI3 in patients with castration-resistant prostate cancer (CRPC). IMPLICATIONS: We describe two clinically relevant mechanisms leading to hyperactivated GLI3 signaling and enhanced AR/GLI3 cross-talk, suggesting that GLI3-specific inhibitors might prove effective to block prostate cancer development or delay CRPC.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Repressoras/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Mutação , Receptores Androgênicos/metabolismo
18.
Child Neurol Open ; 8: 2329048X211055335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820471

RESUMO

Perampanel is a novel antiepileptic drug, which antagonises AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptor. We describe perampanel as an adjunctive treatment for FIRES (febrile infection-related epilepsy syndrome) and other drug-resistant epilepsies. A single-centre, observational, retrospective study involving 20 pediatric patients was conducted. Perampanel was started for three patients with FIRES, achieving seizure cessation in two patients within a day and on days 19 and 32 of illness. Doses used ranged from 4 to 12 mg/day, without any adverse effects reported or discontinuation of therapy. Responder-rate for other drug-resistant epilepsies is 25%. Median time to achieve ≥50% seizure reduction was 80 days (range: 26-326 days). Adverse effect reported in 47% of the patients includes central nervous system-related, and thrombocytopenia. Eight patients discontinued perampanel, because of ineffectiveness or adverse effects. The median time on perampanel before discontinuation was 179 days (range: 94-345 days). Perampanel may be of benefit in pediatrics FIRES and is of utility in other drug-resistant epilepsies.

19.
Cancer Med ; 10(20): 7101-7110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496133

RESUMO

PURPOSE: Human innate lymphoid cells (hILCs) are lineage-negative immune cells that do not express rearranged adaptive antigen receptors. Natural killer (NK) cells are hILCs that contribute to cancer defense. The role of non-NK hILCs in cancer is unclear. Our study aimed to characterize non-NK hILCs in bladder cancer. EXPERIMENTAL DESIGN: Mass cytometry was used to characterize intratumoral non-NK hILCs based on 35 parameters, including receptors, cytokines, and transcription factors from 21 muscle-invasive bladder tumors. Model-based clustering was performed on t-distributed stochastic neighbor embedding (t-SNE) coordinates of hILCs, and the association of hILCs with tumor stage was analyzed. RESULTS: Most frequent among intratumoral non-NK hILCs were hILC1s, which were increased in higher compared with lower stage tumors. Intratumoral hILC1s were marked by Th17-like phenotype with high RORγt, IL-17, and IL-22 compared to Th1 differentiation markers, including Tbet, perforin, and IFN-γ. Compared with intratumoral hILC2s and hILC3s, hILC1s also had lower expression of activation markers (NKp30, NKp46, and CD69) and increased expression of exhaustion molecules (PD-1 and Tim3). Unsupervised clustering identified nine clusters of bladder hILCs, which were not defined by the primary hILC subtypes 1-3. hILC1s featured in all the nine clusters indicating that intratumoral hILC1s displayed the highest phenotypic heterogeneity among all hILCs. CONCLUSIONS: hILC1s are increased in higher stage tumors among patients with muscle-invasive bladder cancer. These intratumoral hILC1s exhibit an exhausted phenotype and Th17-like differentiation, identifying them as potential targets for immunotherapy.


Assuntos
Diferenciação Celular , Linfócitos do Interstício Tumoral/citologia , Células Th17/citologia , Neoplasias da Bexiga Urinária/patologia , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Feminino , Citometria de Fluxo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Citometria por Imagem , Imunidade Celular , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Lectinas Tipo C/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Invasividade Neoplásica , Perforina/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Neoplasias da Bexiga Urinária/imunologia , Interleucina 22
20.
J Transl Genet Genom ; 5: 1-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322662

RESUMO

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...