Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 46(4): 721-730, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33096543

RESUMO

This study examined the klotho (KL) longevity gene polymorphism rs9315202 and psychopathology, including posttraumatic stress disorder (PTSD), depression, and alcohol-use disorders, in association with advanced epigenetic age in three postmortem cortical tissue regions: dorsolateral and ventromedial prefrontal cortices and motor cortex. Using data from the VA National PTSD Brain Bank (n = 117), we found that rs9315202 interacted with PTSD to predict advanced epigenetic age in motor cortex among the subset of relatively older (>=45 years), white non-Hispanic decedents (corrected p = 0.014, n = 42). An evaluation of 211 additional common KL variants revealed that only variants in linkage disequilibrium with rs9315202 showed similarly high levels of significance. Alcohol abuse was nominally associated with advanced epigenetic age in motor cortex (p = 0.039, n = 114). The rs9315202 SNP interacted with PTSD to predict decreased KL expression via DNAm age residuals in motor cortex among older white non-Hispanics decedents (indirect ß = -0.198, p = 0.027). Finally, in dual-luciferase enhancer reporter system experiments, we found that inserting the minor allele of rs9315202 in a human kidney cell line HK-2 genomic DNA resulted in a change in KL transcriptional activities, likely operating via long noncoding RNA in this region. This was the first study to examine multiple forms of psychopathology in association with advanced DNA methylation age across several brain regions, to extend work concerning the association between rs9315202 and advanced epigenetic to brain tissue, and to identify the effects of rs9315202 on KL gene expression. KL augmentation holds promise as a therapeutic intervention to slow the pace of cellular aging, disease onset, and neuropathology, particularly in older, stressed populations.


Assuntos
Glucuronidase/genética , Transtornos de Estresse Pós-Traumáticos , Idoso , Alelos , Metilação de DNA , Epigênese Genética , Epigenômica , Humanos , Proteínas Klotho , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/genética
2.
FASEB J ; 34(6): 7234-7246, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32347987

RESUMO

There is an unmet need for treatments for diseases associated with aging. The antiaging, life-extending, and cognition-enhancing protein Klotho is neuroprotective due to its anti-inflammatory, antioxidative, and pro-myelinating effects. In addition, Klotho is also a tumor suppressor and has beneficial roles in multiple organs. Klotho is downregulated as part of the aging process. Thus, upregulating Klotho in the brain may lead to novel therapeutics to people suffering or at risk for neurodegenerative diseases such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis, and demyelinating diseases such as multiple sclerosis. We attempted to upregulate Klotho for its beneficial effects in the brain and elsewhere. Here, we describe a method to specifically activate Klotho gene expression. To accomplish this task, we designed zinc finger proteins (ZFPs) targeting within -300 bps of the human Klotho promoter. We designed the ZPF constructs either de novo from modular building blocks, or modified sequences from the natural endogenous Egr1 transcription factor backbone structure. Egr1 is known to upregulate Klotho expression. We tested the transcriptional activation effects of these ZFPs in a dual luciferase coincidence reporter system under the control of 4-kb promoter of human Klotho in stable HEK293 cells and in HK-2 cells that express Klotho protein endogenously. We found that the best ZFPs are the de novo designed ones targeting -250 bps of Klotho promoter and one of the Egr1-binding sites. We further enhanced Klotho's activation using p65-Rta transcriptional activation domains in addition to VP64. These upregulation approaches could be useful for studying Klotho's protective effects and designing Klotho boosting therapeutics for future in vivo experiments.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Glucuronidase/genética , Regiões Promotoras Genéticas/genética , Dedos de Zinco/genética , Envelhecimento/genética , Sítios de Ligação/genética , Encéfalo/metabolismo , Linhagem Celular , Cognição/fisiologia , Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Klotho , Luciferases/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética
3.
PLoS One ; 15(1): e0226382, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929539

RESUMO

Klotho is an age-extending, cognition-enhancing protein found to be down-regulated in aged mammals when age-related diseases start to appear. Low levels of Klotho occur in neurodegenerative diseases, kidney disease and many cancers. Many normal and pathologic processes involve the proteolytic shedding of membrane proteins. Transmembrane (TM) Klotho contains two homologous domains, KL1 and KL2 with homology to glycosidases. After shedding by ADAM 10 and 17, a shed Klotho isoform is released into serum and urine by the kidney, and into the CSF by the choroid plexus. We previously reported that human Klotho contains two major cleavage sites. However, the exact cleavage site responsible for the cleavage between the KL1 and KL2 domains remains unknown for the human Klotho, and both sites are unknown for mouse Klotho. In this study, we aimed to identify the cleavage sites leading to the shed forms of human and mouse Klotho. Mutations in the region close to the TM domain of mouse Klotho result in the reduced shedding of the 130 kD (KL1+KL2) and 70 kD (KL1) fragments, suggesting that the cleavage site lies within the mutated region. We further identified the cleavage sites responsible for the cleavage between KL1 and KL2 of human and mouse Klotho. Moreover, mutated Klotho proteins have similar subcellular localization patterns as wild type Klotho. Finally, in an FGF23 functional assay, all Klotho mutants with a nine amino acid deletion can also function as an FGFR1 co-receptor for FGF23 signaling, however, the signaling activity was greatly reduced. The study provides new and important information on Klotho shedding, and paves the way for studies aimed to distinguish between the distinct roles of the various isoforms of Klotho.


Assuntos
Glucuronidase/metabolismo , Proteína ADAM10/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/química , Glucuronidase/genética , Células HEK293 , Humanos , Proteínas Klotho , Camundongos , Microscopia de Fluorescência , Mutagênese , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Alinhamento de Sequência , Transdução de Sinais
4.
FASEB J ; 34(2): 2087-2104, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907991

RESUMO

Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD-ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half-life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3-/- Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4-PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria-induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Albuminúria/metabolismo , Regulação para Baixo , Estresse do Retículo Endoplasmático , Glucuronidase/biossíntese , Túbulos Renais/metabolismo , Transcrição Gênica , Fator 3 Ativador da Transcrição/genética , Albuminúria/genética , Albuminúria/patologia , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Glucuronidase/genética , Humanos , Túbulos Renais/patologia , Proteínas Klotho , Camundongos , Camundongos Knockout
5.
J Mol Neurosci ; 69(2): 264-285, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31250273

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of motor neurons in the brain and spinal cord. ALS neuropathology is associated with increased oxidative stress, excitotoxicity, and inflammation. We and others reported that the anti-aging and cognition-enhancing protein Klotho is a neuroprotective, antioxidative, anti-inflammatory, and promyelinating protein. In mice, its absence leads to an extremely shortened life span and to multiple phenotypes resembling human aging, including motor and hippocampal neurodegeneration and cognitive impairment. In contrast, its overexpression extends life span, enhances cognition, and confers resistance against oxidative stress; it also reduces premature mortality and cognitive and behavioral abnormalities in an animal model for Alzheimer's disease (AD). These pleiotropic beneficial properties of Klotho suggest that Klotho could be a potent therapeutic target for preventing neurodegeneration in ALS. Klotho overexpression in the SOD1 mouse model of ALS resulted in delayed onset and progression of the disease and extended survival that was more prominent in females than in males. Klotho reduced the expression of neuroinflammatory markers and prevented neuronal loss with the more profound effect in the spinal cord than in the motor cortex. The effect of Klotho was accompanied by reduced expression of proinflammatory cytokines and enhanced the expression of antioxidative and promyelinating factors in the motor cortex and spinal cord of Klotho × SOD1 compared to SOD1 mice. Our study provides evidence that increased levels of Klotho alleviate ALS-associated pathology in the SOD1 mouse model and may serve as a basis for developing Klotho-based therapeutic strategies for ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Glucuronidase/genética , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Glucuronidase/metabolismo , Proteínas Klotho , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
6.
J Alzheimers Dis ; 67(3): 1089-1106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30776010

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of neurotoxic amyloid-ß (Aß) peptides consisting of 39-43 amino acids, proteolytically derived fragments of the amyloid-ß protein precursor (AßPP), and the accumulation of the hyperphosphorylated microtubule-associated protein tau. Inhibiting Aß production may reduce neurodegeneration and cognitive dysfunction associated with AD. We have previously used an AßPP-firefly luciferase enzyme complementation assay to conduct a high throughput screen of a compound library for inhibitors of AßPP dimerization, and identified a compound that reduces Aß levels. In the present study, we have identified an analog, compound Y10, which also reduced Aß. Initial kinase profiling assays identified the receptor tyrosine kinase cKit as a putative Y10 target. To elucidate the precise mechanism involved, AßPP phosphorylation was examined by IP-western blotting. We found that Y10 inhibits cKit phosphorylation and increases AßPP phosphorylation mainly on tyrosine residue Y743, according to AßPP751 numbering. A known cKit inhibitor and siRNA specific to cKit were also found to increase AßPP phosphorylation and lower Aß levels. We also investigated a cKit downstream signaling molecule, the Shp2 phosphatase, and found that known Shp2 inhibitors and siRNA specific to Shp2 also increase AßPP phosphorylation, suggesting that the cKit signaling pathway is also involved in AßPP phosphorylation and Aß production. We further found that inhibitors of both cKit and Shp2 enhance AßPP surface localization. Thus, regulation of AßPP phosphorylation by small molecules should be considered as a novel therapeutic intervention for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos beta-Amiloides/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos
7.
J Mol Neurosci ; 64(2): 175-184, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29352444

RESUMO

Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the - 1 to - 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3'-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.


Assuntos
Sistemas CRISPR-Cas , Glucuronidase/genética , Ativação Transcricional , Edição de Genes/métodos , Glucuronidase/metabolismo , Células HEK293 , Humanos , Proteínas Klotho , Regulação para Cima
8.
J Mol Neurosci ; 57(2): 185-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26067431

RESUMO

The current study examined whether overexpression of Klotho (KL) in transgenic mice can enhance remyelination following cuprizone-induced demyelination and improves the clinical outcome in experimental autoimmune encephalomyelitis (EAE). Demyelination was achieved by feeding transgenic mice overexpressing the transmembrane form of Klotho (KL-OE) and wild-type (WT) littermates cuprizone-containing chow for 6 weeks. The animals were then allowed to remyelinate for 3 weeks. Paraphenylenediamine staining and platelets-derived growth factor receptor α (PDGFRα) and glutathione S-transferase pi (GSTpi) immunohistochemistry were performed on corpus callosum (CC) sections for quantification of myelin and progenitor and mature oligodendrocytes, respectively. The EAE model was induced with the MOG35-55 peptide. The animals were scored daily for clinical symptoms for 30 days. Following 6 weeks of demyelination, both KL-OE mice and WT littermates demonstrated almost complete and comparable demyelination of the CC. However, the level of spontaneous remyelination was increased approximately two-fold in KL-OE mice, although no significant differences in the numbers of PDGFRα and GSTpi-positive cells were observed. Following EAE induction, Klotho overexpression did not affect the clinical scores, likely due to the different roles Klotho plays in the brain and spinal cord. Thus, increasing Klotho expression should be considered as a therapy for enhancing remyelination in the brains of individuals with multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Glucuronidase/metabolismo , Bainha de Mielina/metabolismo , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cuprizona/toxicidade , Encefalomielite Autoimune Experimental/genética , Glucuronidase/genética , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Bainha de Mielina/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
J Mol Neurosci ; 55(1): 76-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24907942

RESUMO

Klotho functions as an aging suppressor, which, in mice, extends lifespan when overexpressed and accelerates development of aging-like phenotypes when disrupted. Klotho is mainly expressed in brain and kidney and is secreted into the serum and CSF. We have previously shown that Klotho is reduced in brains of old monkeys, rats, and mice. We further reported the ability of Klotho to enhance oligodendrocyte differentiation and myelination. Here, we examined the signaling pathways induced by Klotho in MO3.13, a human oligodendrocytic hybrid cell line. We show that exogenous Klotho affects the ERK and Akt signaling pathways, decreases the proliferative abilities and enhances differentiation of MO3.13 cells. Furthermore, microarray analysis of Klotho-treated MO3.13 cells reveals a massive change in gene expression with 80 % of the differentially expressed genes being downregulated. Using gene set enrichment analysis, we predicted potential transcription factors involved in regulating Klotho-treated MO3.13 cells and found that these cells are highly enriched in the gene sets, that are similarly observed in cancer, cardiovascular disease, stress, aging, and hormone-related chemical and genetic perturbations. Since Klotho is downregulated in all brain tumors tested to date, enhancing Klotho has therapeutic potential for treating brain and other malignancies.


Assuntos
Glucuronidase/farmacologia , Neurogênese , Oligodendroglia/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Humanos , Proteínas Klotho , Sistema de Sinalização das MAP Quinases , Camundongos , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Proteínas Recombinantes/farmacologia , Fatores de Transcrição/metabolismo
10.
Biochemistry ; 53(34): 5579-87, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25110992

RESUMO

Membrane protein shedding is a critical step in many normal and pathological processes. The anti-aging protein klotho (KL), mainly expressed in kidney and brain, is secreted into the serum and CSF, respectively. KL is proteolytically released, or shed, from the cell surface by ADAM10 and ADAM17, which are the α-secretases that also cleave the amyloid precursor protein and other proteins. The transmembrane KL is a coreceptor with the FGF receptor for FGF23, whereas the shed form acts as a circulating hormone. However, the precise cleavage sites in KL are unknown. KL contains two major cleavage sites: one close to the juxtamembrane region and another between the KL1 and KL2 domains. We identified the cleavage site involved in KL release by mutating potential sheddase(s) recognition sequences and examining the production of the KL extracellular fragments in transfected COS-7 cells. Deletion of amino acids T958 and L959 results in a 50-60% reduction in KL shedding, and an additional P954E mutation results in further reduction of KL shedding by 70-80%. Deletion of amino acids 954-962 resulted in a 94% reduction in KL shedding. This mutant also had moderately decreased cell surface expression, yet had overall similar subcellular localization as that of WT KL, as demonstrated by immunofluorescence. Cleavage-resistant mutants could function as a FGFR coreceptor for FGF23, but they lost activity as a soluble form of KL in proliferation and transcriptional reporter assays. Cleavage between the KL1 and KL2 domains is dependent on juxtamembrane cleavage. Our results shed light onto mechanisms underlying KL release from the cell membrane and provide a target for potential pharmacologic interventions aimed at regulating KL secretion.


Assuntos
Glucuronidase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Primers do DNA , Glucuronidase/química , Glucuronidase/genética , Proteínas Klotho , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Frações Subcelulares/metabolismo
11.
J Biol Chem ; 289(35): 24700-15, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25037225

RESUMO

Generation of reactive oxygen species (ROS), leading to oxidative damage and neuronal cell death, plays an important role in the pathogenesis of neurodegenerative disorders, including Alzheimer disease. The present study aimed to examine the mechanism by which the anti-aging protein Klotho exerts neuroprotective effects against neuronal damage associated with neurodegeneration and oxidative stress. Pretreatment of rat primary hippocampal neurons and mouse hippocampal neuronal cell line HT22 with recombinant Klotho protected these cells from glutamate and oligomeric amyloid ß (oAß)-induced cytotoxicity. In addition, primary hippocampal neurons obtained from Klotho-overexpressing mouse embryos were more resistant to both cytotoxic insults, glutamate and oAß, compared with neurons from wild-type littermates. An antioxidative stress array analysis of neurons treated with Klotho revealed that Klotho significantly enhances the expression of the thioredoxin/peroxiredoxin (Trx/Prx) system with the greatest effect on the induction of Prx-2, an antioxidant enzyme, whose increase was confirmed at the mRNA and protein levels. Klotho-induced phosphorylation of the PI3K/Akt pathway, a pathway important in apoptosis and longevity, was associated with sustained inhibitory phosphorylation of the transcription factor forkhead box O3a (FoxO3a) and was essential for the induction of Prx-2. Down-regulation of Prx-2 expression using a lentivirus harboring shRNA almost completely abolished the ability of Klotho to rescue neurons from glutamate-induced death and significantly, but not completely, inhibited cell death mediated by oAß, suggesting that Prx-2 is a key modulator of neuroprotection. Thus, our results demonstrate, for the first time, the neuroprotective role of Klotho and reveal a novel mechanism underlying this effect.


Assuntos
Glucuronidase/fisiologia , Neurônios/fisiologia , Animais , Feminino , Proteínas Klotho , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Oxirredução , Estresse Oxidativo , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
12.
Am J Neurodegener Dis ; 2(1): 15-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23515184

RESUMO

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disorder marked by memory impairment and cognitive deficits. A major component of AD pathology is the accumulation of amyloid plaques in the brain, which are comprised of amyloid beta (Aß) peptides derived from the amyloidogenic processing of the amyloid precursor protein (AßPP) by ß- and γ-secretases. In a subset of patients, inheritance of mutations in the AßPP gene is responsible for altering Aß production, leading to early onset disease. Interestingly, many of these familial mutations lie within the transmembrane domain of the protein near the GxxxG and GxxxA dimerization motifs that are important for transmembrane interactions. As AßPP dimerization has been linked to changes in Aß production, it is of interest to know whether familial AßPP mutations affect full-length APP dimerization. Using bimolecular fluorescence complementation (BiFC), blue native gel electrophoresis, and live cell chemical cross-linking, we found that familial Alzheimer's disease (FAD) mutations do not affect full-length AßPP dimerization in transfected HEK293 and COS7 cells. It follows that changes in AßPP dimerization are not necessary for altered Aß production, and in FAD mutations, changes in Aß levels are more likely a result of alternative proteolytic processing.

13.
J Neurosci ; 33(5): 1927-39, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365232

RESUMO

We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.


Assuntos
Encéfalo/metabolismo , Glucuronidase/metabolismo , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/metabolismo , Animais , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Corpo Caloso/metabolismo , Feminino , Glucuronidase/genética , Proteínas Klotho , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Nervo Óptico/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1/fisiologia
14.
Am J Neurodegener Dis ; 1(1): 75-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22822474

RESUMO

The amyloid ß precursor protein (APP) is a single-pass transmembrane glycoprotein that is ubiquitously expressed in many cell types, including neurons. Amyloidogenic processing of APP by ß- and γ-secretases leads to the production of amyloid-ß (Aß) peptides that can oligomerize and aggregate into amyloid plaques, a characteristic hallmark of Alzheimer's disease (AD) brains. Multiple reports suggest that dimerization of APP may play a role in Aß production; however, it is not yet clear whether APP dimers increase or decrease Aß and the mechanism is not fully understood. To better understand the relationship between APP dimerization and production of Aß, a high throughput screen for small molecule modulators of APP dimerization was conducted using APP-Firefly luciferase enzyme complementation to detect APP dimerization. Selected modulators identified from a compound library of 77,440 compounds were tested for their effects on Aß generation. Two molecules that inhibited APP dimerization produced a reduction in Aß levels as measured by ELISA. The inhibitors did not change sAPPα or γ-CTF levels, but lowered sAPPß levels, suggesting that blocking the dimerization is preventing the cleavage by ß-secretase in the amyloidogenic processing of APP. To our knowledge, this is the first High Throughput Screen (HTS) effort to identify small molecule modulators of APP dimerization. Inhibition of APP dimerization has previously been suggested as a therapeutic target in AD. The findings reported here further support that modulation of APP dimerization may be a viable means of reducing the production of Aß.

15.
J Alzheimers Dis ; 26(4): 647-55, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21694460

RESUMO

Amyloidogenic processing of the amyloid-ß protein precursor (AßPP) produces amyloid-ß peptides (Aß), the major constituent of amyloid plaques in the brains of Alzheimer's disease (AD) patients. Experimental evidence suggests that increased dimerization of AßPP increases Aß while decreased dimerization of AßPP decreases Aß production. If true, developing tools for detecting AßPP-AßPP interactions to understand AßPP processing leading to Aß production would be important. Here, we developed the method of ß-galactosidase (ß-gal) enzyme fragment complementation as a means to detect AßPP-AßPP interactions. Inactive ß-gal fragments are independently tagged to the C-terminal ends of monomeric AßPPs, and will come together to form a functional enzyme upon AßPP-AßPP interactions. Successful detection of ß-gal activity has been used to qualitatively visualize and quantify the amount of AßPP dimers or higher oligomers. This method can be used to enhance our understanding of the biological processes dependent upon AßPP-AßPP interactions.


Assuntos
Precursor de Proteína beta-Amiloide/química , beta-Galactosidase/química , Precursor de Proteína beta-Amiloide/genética , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Teste de Complementação Genética , Imuno-Histoquímica , Luminescência , Plasmídeos/genética , beta-Galactosidase/genética
16.
J Neurochem ; 113(1): 262-74, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089128

RESUMO

The amyloid precursor protein is a ubiquitously expressed transmembrane protein that has been long implicated in the pathogenesis of Alzheimer's disease but its normal biological function has remained elusive despite extensive effort. We have previously reported the identification of Notch2 as an amyloid precursor protein interacting protein in E18 rat neurons. Here, we sought to reveal the physiologic consequences of this interaction. We report a functional relationship between amyloid precursor protein and Notch1, which does not affect Delta ligand binding. First, we observed interactions between the amyloid precursor protein and Notch in mouse embryonic stem cells lacking both presenilin 1 and presenilin 2, the active proteolytic components of the gamma-secretase complex, suggesting that these two transmembrane proteins can interact in the absence of presenilin. Next, we demonstrated that the amyloid precursor protein affects Notch signaling by using Notch-dependent luciferase assays in two cell lines, the human embryonic kidney 293 and the monkey kidney, COS7. We found that the amyloid precursor protein exerts opposing effects on Notch signaling in human embryonic kidney 293 vs. COS7 cells. Finally, we show that more Notch Intracellular Domain is found in the nucleus in the presence of exogenous amyloid precursor protein or its intracellular domain, suggesting the mechanism by which the amyloid precursor protein affects Notch signaling in certain cells. Our results provide evidence of potentially important communications between the amyloid precursor protein and Notch.


Assuntos
Precursor de Proteína beta-Amiloide/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Transformada , Células Cultivadas , Chlorocebus aethiops , Proteínas Contráteis/genética , Embrião de Mamíferos , Filaminas , Citometria de Fluxo/métodos , Regulação da Expressão Gênica/genética , Humanos , Proteínas Luminescentes/genética , Camundongos , Proteínas dos Microfilamentos/genética , Presenilina-1/deficiência , Presenilina-2/deficiência , Ligação Proteica/efeitos dos fármacos , Proteínas/genética , Células-Tronco , Transfecção/métodos
17.
Mol Neurodegener ; 3: 5, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18348724

RESUMO

BACKGROUND: Evidence from biochemical, epidemiological and genetic findings indicates that cholesterol levels are linked to amyloid-beta (Abeta) production and Alzheimer's disease (AD). Oxysterols, which are cholesterol-derived ligands of the liver X receptors (LXRs) and oxysterol binding proteins, strongly regulate the processing of amyloid precursor protein (APP). Although LXRs have been studied extensively, little is known about the biology of oxysterol binding proteins. Oxysterol-binding protein 1 (OSBP1) is a member of a family of sterol-binding proteins with roles in lipid metabolism, regulation of secretory vesicle generation and signal transduction, and it is thought that these proteins may act as sterol sensors to control a variety of sterol-dependent cellular processes. RESULTS: We investigated whether OSBP1 was involved in regulating APP processing and found that overexpression of OSBP1 downregulated the amyloidogenic processing of APP, while OSBP1 knockdown had the opposite effect. In addition, we found that OSBP1 altered the trafficking of APP-Notch2 dimers by causing their accumulation in the Golgi, an effect that could be reversed by treating cells with OSBP1 ligand, 25-hydroxycholesterol. CONCLUSION: These results suggest that OSBP1 could play a role in linking cholesterol metabolism with intracellular APP trafficking and Abeta production, and more importantly indicate that OSBP1 could provide an alternative target for Abeta-directed therapeutic.

18.
Glia ; 56(1): 118-33, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17963267

RESUMO

Changes in brain white matter are prominent features of the aging brain and include glial cell activation, disruption of myelin membranes with resultant reorganization of the molecular components of the node of Ranvier, and loss of myelinated fibers associated with inflammation and oxidative stress. In previous studies, overexpression of CNP, a key myelin protein, was implicated in age-related changes in myelin and axons. Here we examine the extent of CNP accumulation in brain white matter and isolated myelin of aged rhesus monkeys and its relationship to CNP degradation and partitioning in myelin. With age, excess CNP is found in myelin and throughout brain white matter accompanied by proteolytic fragments of CNP. These increases occur in the absence of changes in CNP mRNA levels. Using a combination of 2D electrophoresis, immunoprecipitation, and mass spectrometry analysis, ubiquitinated CNP was demonstrable in the Triton X-100 insoluble lipid raft associated fractions of myelin isolated from rhesus monkeys. Further, using ubiquitin-mediated fluorescence complementation (UbFC), ubiquitinated CNP was visualized by microscopy in both COS-7 and MO3.13 cells and by immunoblot in MO3.13 cells and appears to at least partially localize within lipid rafts. The findings suggest that incomplete degradation of CNP due to failure of the proteasomal system and aberrant degradation by calpain-1 leads to age-related CNP accumulation and proteolysis. In sum, we suspect these phenomena result in age-related dysfunction of CNP in the lipid raft, which may lead to myelin and axonal pathology.


Assuntos
2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Envelhecimento/metabolismo , Microdomínios da Membrana/enzimologia , Bainha de Mielina/metabolismo , Ubiquitina/metabolismo , Animais , Western Blotting , Células COS , Calpaína/metabolismo , Eletrocromatografia Capilar , Centrifugação com Gradiente de Concentração , Chlorocebus aethiops , Interpretação Estatística de Dados , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Imunoprecipitação , Macaca mulatta , Espectrometria de Massas , Ensaios de Proteção de Nucleases , Oligodendroglia/metabolismo , Plasmídeos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
19.
Proc Natl Acad Sci U S A ; 104(50): 19796-801, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18056631

RESUMO

Cleavage and release (shedding) of membrane proteins is a critical regulatory step in many normal and pathological processes. Evidence suggests that the antiaging transmembrane protein Klotho (KL) is shed from the cell surface by proteolytic cleavage. In this study, we attempted to identify the enzymes responsible for the shedding of KL by treating KL-transfected COS-7 cells with a panel of proteinase inhibitors and measuring cleavage products by Western blot. We report that metalloproteinase inhibitors, including EDTA, EGTA, and TAPI-1, inhibit the shedding of KL, whereas insulin increases shedding. The effects of the inhibitors in KL-transfected COS-7 cells were repeated in studies on rat kidney slices ex vivo, which validates the use of COS-7 cells as our model system. Tissue inhibitor of metalloproteinase (Timp)-3 effectively inhibits KL cleavage, whereas Timp-1 and Timp-2 do not, a profile that indicates the involvement of members of the A Desintegrin and Metalloproteinase (ADAM) family. Cotransfection of KL with either ADAM10 or ADAM17 enhances KL cleavage, whereas cotransfection of KL with small interference RNAs specific to ADAM10 and ADAM17 inhibits KL secretion. These results indicate that KL shedding is mediated mainly by ADAM10 and ADAM17 in KL-transfected COS-7 cells. The effect of insulin is abolished when ADAM10 or ADAM17 are silenced. Furthermore, we demonstrate that the effect of insulin on KL shedding is inhibited by wortmannin, showing that insulin acts through a PI3K-dependent pathway. Insulin enhances KL shedding without increasing ADAM10 and ADAM17 mRNA and protein levels, suggesting that it acts by stimulating their proteolytic activities.


Assuntos
Proteínas ADAM/metabolismo , Glucuronidase/metabolismo , Insulina/farmacologia , Proteínas ADAM/genética , Animais , Células COS , Membrana Celular/enzimologia , Chlorocebus aethiops , Glucuronidase/genética , Proteínas Klotho , RNA Interferente Pequeno/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Inibidores Teciduais de Metaloproteinases/metabolismo
20.
J Neurochem ; 97(1): 30-43, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16515557

RESUMO

We previously demonstrated that the amyloid precursor protein (APP) interacts with Notch receptors. Here, we confirmed the APP/Notch1 endogenous interaction in embryonic day 17 rat brain tissue, suggesting the interaction was not as a result of over-expression artifacts. To investigate potential homodimeric and heterodimeric interactions of APP and Notch2 (N2), we have visualized the subcellular localization of the APP/N2 complexes formed in living cells using bimolecular fluorescence complementation (BiFC) analysis. BiFC was accomplished by fusing the N-terminal fragment or the C-terminal fragment of yellow fluorescent protein (YFP) to APP, N2, and a C-terminally truncated form of N2. When expressed in COS-7 cells, these tagged proteins alone did not produce a fluorescent signal. The tagged APP homodimer produced a weak fluorescent signal, while neither full-length N2, nor a truncated N2 alone, produced a visible signal, suggesting that N2 receptors do not form homodimers. The strongest fluorescent signal was obtained with co-expression of the C-terminal fragment of YFP fused to APP and the N-terminal fragment of YFP fused to the truncated form of N2. This heterodimer localized to plasma membrane, endoplasmic reticulum (ER), Golgi and other compartments. The results were confirmed and quantified by flow cytometry. The BiFC method of specifically visualizing APP/Notch interactions can be applied to study APP and Notch signaling during development, aging and neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Imunofluorescência/métodos , Neurônios/metabolismo , Receptor Notch2/metabolismo , Coloração e Rotulagem/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Proteínas de Bactérias/química , Células COS , Compartimento Celular/imunologia , Membrana Celular/imunologia , Chlorocebus aethiops , Dimerização , Corantes Fluorescentes/síntese química , Membranas Intracelulares/imunologia , Proteínas Luminescentes/química , Organelas/imunologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Transdução de Sinais/imunologia , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...