Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 814-830.e23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364788

RESUMO

Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.


Assuntos
Bainha de Mielina , Retroelementos , Animais , Expressão Gênica , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Retroelementos/genética , RNA/metabolismo , Peixe-Zebra/genética , Anuros
2.
Proc Natl Acad Sci U S A ; 120(35): e2302997120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603759

RESUMO

Tissue macrophages, including microglia, are notoriously resistant to genetic manipulation. Here, we report the creation of Adeno-associated viruses (AAV) variants that efficiently and widely transduce microglia and tissue macrophages in vivo following intravenous delivery, with transgene expression of up to 80%. We use this technology to demonstrate manipulation of microglia gene expression and microglial ablation, thereby providing invaluable research tools for the study of these important cells.


Assuntos
Dependovirus , Microglia , Dependovirus/genética , Capsídeo , Transgenes , Macrófagos
3.
Front Cell Neurosci ; 17: 1158388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091921

RESUMO

Since SARM1 mutations have been identified in human neurological disease, SARM1 inhibition has become an attractive therapeutic strategy to preserve axons in a variety of disorders of the peripheral (PNS) and central nervous system (CNS). While SARM1 has been extensively studied in neurons, it remains unknown whether SARM1 is present and functional in myelinating glia? This is an important question to address. Firstly, to identify whether SARM1 dysfunction in other cell types in the nervous system may contribute to neuropathology in SARM1 dependent diseases? Secondly, to ascertain whether therapies altering SARM1 function may have unintended deleterious impacts on PNS or CNS myelination? Surprisingly, we find that oligodendrocytes express sarm1 mRNA in the zebrafish spinal cord and that SARM1 protein is readily detectable in rodent oligodendrocytes in vitro and in vivo. Furthermore, activation of endogenous SARM1 in cultured oligodendrocytes induces rapid cell death. In contrast, in peripheral glia, SARM1 protein is not detectable in Schwann cells and satellite glia in vivo and sarm1/Sarm1 mRNA is detected at very low levels in Schwann cells, in vivo, in zebrafish and mouse. Application of specific SARM1 activators to cultured mouse Schwann cells does not induce cell death and nicotinamide adenine dinucleotide (NAD) levels remain unaltered suggesting Schwann cells likely contain no functionally relevant levels of SARM1. Finally, we address the question of whether SARM1 is required for myelination or myelin maintenance. In the zebrafish and mouse PNS and CNS, we show that SARM1 is not required for initiation of myelination and myelin sheath maintenance is unaffected in the adult mouse nervous system. Thus, strategies to inhibit SARM1 function to treat neurological disease are unlikely to perturb myelination in humans.

4.
Sci Adv ; 8(20): eabi9366, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594354

RESUMO

In an attempt to improve reproducibility, more attention is being paid to potential sources of stress in the laboratory environment. Here, we report that the mere proximity of pregnant or lactating female mice causes olfactory-mediated stress-induced analgesia, to a variety of noxious stimuli, in gonadally intact male mice. We show that exposure to volatile compounds released in the urine of pregnant and lactating female mice can themselves produce stress and associated pain inhibition. This phenomenon, a novel form of female-to-male chemosignaling, is mediated by female scent marking of urinary volatiles, such as n-pentyl-acetate, and likely signals potential maternal aggression aimed at defending against infanticide by stranger males.

5.
Open Biol ; 11(1): 200352, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497588

RESUMO

Myelin sheaths, by supporting axonal integrity and allowing rapid saltatory impulse conduction, are of fundamental importance for neuronal function. In response to demyelinating injuries in the central nervous system (CNS), oligodendrocyte progenitor cells (OPCs) migrate to the lesion area, proliferate and differentiate into new oligodendrocytes that make new myelin sheaths. This process is termed remyelination. Under specific conditions, demyelinated axons in the CNS can also be remyelinated by Schwann cells (SCs), the myelinating cell of the peripheral nervous system. OPCs can be a major source of these CNS-resident SCs-a surprising finding given the distinct embryonic origins, and physiological compartmentalization of the peripheral and central nervous system. Although the mechanisms and cues governing OPC-to-SC differentiation remain largely undiscovered, it might nevertheless be an attractive target for promoting endogenous remyelination. This article will (i) review current knowledge on the origins of SCs in the CNS, with a particular focus on OPC to SC differentiation, (ii) discuss the necessary criteria for SC myelination in the CNS and (iii) highlight the potential of using SCs for myelin regeneration in the CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Remielinização/fisiologia , Diferenciação Celular , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/transplante , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Nat Aging ; 1(9): 826-837, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-37117631

RESUMO

Like many adult stem cell populations, the capacity of oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate is substantially impaired with aging. Previous work has shown that tissue-wide transient expression of the pluripotency factors Oct4, Sox2, Klf4 and c-Myc extends lifespan and enhances somatic cell function. Here we show that just one of these factors, c-Myc, is sufficient to determine the age state of OPC: c-Myc expression in aged OPCs drives their functional rejuvenation, while its inhibition in neonatal OPCs induces an aged-like phenotype, as determined by in vitro assays and transcriptome analysis. Increasing c-Myc expression in aged OPCs in vivo restores their proliferation and differentiation capacity, thereby enhancing regeneration in an aged central nervous system environment. Our results directly link Myc to cellular activity and cell age state, with implications for understanding regeneration in the context of aging, and provide important insights into the biology of stem cell aging.


Assuntos
Células-Tronco Adultas , Células Precursoras de Oligodendrócitos , Células Precursoras de Oligodendrócitos/fisiologia , Sistema Nervoso Central , Células-Tronco/metabolismo , Diferenciação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...