Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 103(4): 36850420980617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33350334

RESUMO

During the operation of subway vehicles, the vibration of air conditioning units is mainly transmitted to the vehicle body through the suspension support, which seriously affects the stability and comfort of the vehicle during operation. Therefore, the design and optimization of the suspension support of air conditioning units has become a hot topic in the research of the dynamic characteristics of subway vehicles. In this paper, the rigid and flexible coupling dynamic model of metro is firstly calculated to simulate the stress of the suspension point of air conditioning of the vehicle body when the vehicle is running. The initial structure design of the suspension support is carried out, and the stress of the air conditioning suspension point is taken as the load input to analyze the stiffness and strength of the initial structure of the suspension support. Then, the fatigue life is taken as the topology constraint, and the variable density method (SIMP) is used to optimize the topology of the suspension bracket. Finally, the optimized suspension support is validated. The results show that after topological optimization, the maximum displacement and maximum stress of the suspension support under vertical, horizontal, and vertical loads are reduced by 80%, 93%, and 99%, respectively, compared with the original structure model, and the maximum stress under vertical loads is reduced by 50%.

2.
ACS Appl Mater Interfaces ; 9(19): 16435-16447, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28481082

RESUMO

Multifunctional biomaterials that simultaneously combine high biocompatibility, biodegradability, and bioactivity are promising for applications in various biomedical fields such as bone defect repair and drug delivery. Herein, the synthesis of hydroxyapatite nanowire@magnesium silicate nanosheets (HANW@MS) core-shell porous hierarchical nanocomposites (nanobrushes) is reported. The morphology of the magnesium silicate (MS) shell can be controlled by simply varying the solvothermal temperature and the amount of Mg2+ ions. Compared with hydroxyapatite nanowires (HANWs), the HANW@MS core-shell porous hierarchical nanobrushes exhibit remarkably increased specific surface area and pore volume, endowing the HANW@MS core-shell porous hierarchical nanobrushes with high-performance drug loading and sustained release. Moreover, the porous scaffold of HANW@MS/chitosan (HANW@MS/CS) is prepared by incorporating the HANW@MS core-shell porous hierarchical nanobrushes into the chitosan (CS) matrix. The HANW@MS/CS porous scaffold not only promotes the attachment and growth of rat bone marrow derived mesenchymal stem cells (rBMSCs), but also induces the expression of osteogenic differentiation related genes and the vascular endothelial growth factor (VEGF) gene of rBMSCs. Furthermore, the HANW@MS/CS porous scaffold can obviously stimulate in vivo bone regeneration, owing to its high bioactive performance on the osteogenic differentiation of rBMSCs and in vivo angiogenesis. Since Ca, Mg, Si, and P elements are essential in human bone tissue, HANW@MS core-shell porous hierarchical nanobrushes with multifunctional properties are expected to be promising for various biomedical applications such as bone defect repair and drug delivery.


Assuntos
Nanofios , Animais , Regeneração Óssea , Durapatita , Humanos , Silicatos de Magnésio , Células-Tronco Mesenquimais , Nanocompostos , Osteogênese , Porosidade , Ratos , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
3.
Sci Rep ; 7: 44129, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287178

RESUMO

Biomaterials with both excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. In this study, simvastatin with both osteogenic and angiogenic activities was incorporated into the mesoporous hydroxyapatite microspheres (MHMs) synthesized through a microwave-assisted hydrothermal method using fructose 1,6-bisphosphate trisodium salt (FBP) as an organic phosphorous source. The effects of the simvastatin-loaded MHMs (S-MHMs) on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and angiogenesis in EA.hy926 cells were investigated. The results showed that the S-MHMs not only enhanced the expression of osteogenic markers in rBMSCs but also promoted the migration and tube formation of EA.hy926 cells. Furthermore, the S-MHMs were incorporated into collagen matrix to construct a novel S-MHMs/collagen composite scaffold. With the aid of MHMs, the water-insoluble simvastatin was homogenously incorporated into the hydrophilic collagen matrix and presented a sustained release profile. In vivo experiments showed that the S-MHMs/collagen scaffolds enhanced the bone regeneration and neovascularization simultaneously. These results demonstrated that the water-insoluble simvastatin could be incorporated into the MHMs and maintained its biological activities, more importantly, the S-MHMs/collagen scaffolds fabricated in this study are of immense potential in bone defect repair by enhancing osteogenesis and angiogenesis simultaneously.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Durapatita , Células-Tronco Mesenquimais/metabolismo , Microesferas , Osteogênese/efeitos dos fármacos , Sinvastatina , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Durapatita/química , Durapatita/farmacocinética , Durapatita/farmacologia , Células-Tronco Mesenquimais/patologia , Porosidade , Ratos , Ratos Sprague-Dawley , Sinvastatina/química , Sinvastatina/farmacocinética , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...