Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39203220

RESUMO

Conventional indoor corrosion test design methods primarily focus on the rapid evaluation of material corrosion resistance, often neglecting the impact of environmental stress levels on the equivalence of corrosion mechanisms. This study introduces a novel indoor corrosion test design method based on the principle of corrosion mechanism equivalence, aimed at improving the accuracy of indoor accelerated corrosion simulations. We define the characteristic of corrosion mechanism equivalence as the Corrosion Mechanism Equivalence Degree (CMed), which quantifies the similarity between corrosion mechanisms in indoor accelerated tests and field tests. Then, modified conventional link function models are defined, integrating the probability distribution of environmental factors to estimate corrosion model parameters more precisely. Finally, an optimization problem is constructed for accelerated corrosion tests based on CMed, incorporating constraints on environmental stress levels and acceleration factors. A case study demonstrates the proposed method's ability to accurately simulate the actual service environment of materials, determining the appropriate stress levels for indoor accelerated corrosion tests while ensuring the desired acceleration factor and corrosion mechanism equivalence.

2.
ACS Appl Energy Mater ; 3(10): 9568-9575, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33134879

RESUMO

Incorporating plasmonic nanostructures is a promising strategy to enhance both the optical and electrical characteristics of photovoltaic devices via more efficient harvesting of incident light. Herein, we report a facile fabrication scheme at low temperature for producing gold nanoparticles embedded in anatase TiO2 films, which can simultaneously improve the efficiency and stability of n-i-p planar heterojunction perovskite solar cells (PSCs). The PSCs based on rigid and flexible substrates with 0.2 wt % Au-TiO2/TiO2 dual electron transport layers (ETLs) achieved power conversion efficiencies up to 20.31 and 15.36%, superior to that of devices with TiO2 as a single ETL. Moreover, 0.2 wt % Au-TiO2/TiO2 devices demonstrated significant stability in light soaking, which is attributed to improved light absorption, low charge recombination loss, and enhanced carrier transport, and extraction with the plasmonic Au-TiO2/TiO2 dual ETL. The present work improves the practicability of high-performance and flexible PSCs by engineering the photogenerated carrier dynamics at the interface.

3.
ACS Appl Mater Interfaces ; 9(39): 33810-33818, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28884580

RESUMO

Although some kinds of semiconductor metal oxides (SMOs) have been applied as electron selective layers (ESLs) for planar perovskite solar cells (PSCs), electron transfer is still limited by low electron mobility and defect film formation of SMO ESLs fabricated via low-temperature solution process. Herein, the C70 interlayer between TiO2 and (HC(NH2)2PbI3)x(CH3NH3PbCl3)1-x is prepared by spin-coating and low-temperature annealing for planar n-i-p PSCs. The resultant TiO2/C70 ESL shows good surface morphology, efficient electron extraction, and facilitation of high-quality perovskite film formation, which can be attributed to the suitable nanosize and the superior electronic property of C70 molecules. In comparison with pristine TiO2-based PSCs, the efficiency and hysteresis index are, respectively, enhanced 28% and reduced 76% by adding the C70 interlayer between TiO2 and perovskite on the basis of statistical data of more than 50 cells. With the main advantages of low-temperature process and optimized interface, the champion efficiency of PSCs on flexible substrates could exceed 12% in contrast with the above 18% on rigid substrate.

4.
Chem Commun (Camb) ; 53(79): 10882-10885, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28634601

RESUMO

A facile aqueous-based fabrication scheme is developed for producing annealing-free anatase TiO2 (AF-TiO2) films that exhibit efficient electron transport properties in planar heterojunction perovskite solar cells (PSCs). AF-TiO2 films are fabricated by spin coating on a substrate a colloidal solution of anatase TiO2 nanoparticles (NPs) prepared via a low temperature hydrolytic sol-gel method. The resultant AF-TiO2 films show low electrical resistance, high transmittance in the visible and near-infrared regions and facilitation of high-quality perovskite film formation, which can be attributed to their homogeneous surface morphology and nanocrystallinity. The AF-TiO2 based PSCs achieve a power conversion efficiency (PCE) of 18.29 ± 0.18%, showing significant improvement compared to the control PSCs (PCE = 11.33 ± 0.32%) based on TiO2 films made by high-temperature annealing of amorphous TiO2 (HTA-TiO2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA