Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt A): 833-845, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279842

RESUMO

This work reports the design and preparation of novel organic (polyvinyl alcohol, PVA)-inorganic (neodymium nitrate, Nd(NO3)3) hybrid coatings on micro-arc oxidation (MAO) coating for magnesium (Mg) alloy corrosion protection. X-ray diffractometer, X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, field emission scanning electron microscope, Energy Dispersive X-ray spectrometer and surface roughness were applied to characterize the chemical composition and surface morphology of the coatings. The corrosion resistance of the coatings was evaluated by electrochemical and salt spray tests. The results suggested that the formation of PVA-Nd3+ and PVA-Mg2+ complexes promoted the enrichment of Nd3+ on the surface, and thereby improved the sealing quality and compactness of the coating. Interestingly, when the coating was damaged, the Nd3+ ions were transformed to their carbonates and covered the active sites, and thus exhibiting self-healing function. Further, the corrosion resistance of PVA-Nd3+ modified MAO composite coating on AZ31 Mg alloy was improved.

2.
Acta Crystallogr C Struct Chem ; 76(Pt 7): 655-662, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32624512

RESUMO

Methanol- and temperature-induced dissolution-recrystallization structural transformation (DRST) was observed among two novel CuII complexes. This is first time that the combination of X-ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII complex at 60 °C in methanol to obtain a binuclear copper(II) complex. Combining time-dependent high-resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis(8-methoxyquinoline-κ2N,O)bis(thiocyanato-κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1, to di-µ-methanolato-κ4O:O-bis[(8-methoxyquinoline-κ2N,O)(thiocyanato-κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2, viz. [Cu(SCN)2(L)2] (Cu1) → [Cu(L)2] → [Cu(L)]/L → [Cu2(CH3O)2(NCS)2(L)2] (Cu2). We screened the antitumour activities of L (8-methoxyquinoline), Cu1 and Cu2 and found that the antiproliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1.

3.
Phys Chem Chem Phys ; 22(19): 10924-10933, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32373808

RESUMO

Recent experimental investigations of the photochemical properties of a series of sulfur-substituted pyrimidine derivatives provide insights into the phototherapeutic potential of these nucleobase variants. Herein we elucidate the triplet formation mechanism of two prospective UVA-activated phototherapeutic molecules, 4-thiothymine and 2,4-dithiothymine, upon photo-excitation by applying the trajectory surface hopping dynamics at the LR-TDDFT level. Our simulations reasonably reproduce the experimental time constants and demonstrate the preferred triplet formation pathway which starts from the S1(nSπ*) state for both molecules. It is found that deactivation of the first bright state to the S1(nSπ*) state proceeds through a mechanism involving elongation of the C5-C6 and C4-S8 bond-lengths and C2-pyramidalization in 4-thiothymine and involving elongation of the C5-C6 and C2-S7 bond-lengths in 2,4-dithiothymine. The intersystem crossing of 2,4-dithiothymine occurs either at geometries characterized by elongated C5-C6 and C2-S7 bond-lengths or at geometries showing elongated C5-C6 and C4-S8 bond-lengths as seen in 4-thiothymine. The solvents are found to affect the S2 state decay of 4-thiothymine, leading to a competing pathway between S2→ S1 and S2→ T3. This study provides a molecular-level understanding of the underlying excited-state relaxation of the two UVA-activated thiopyrimidines, which may be linked to their potential applications in pharmacological science and also prove helpful for designing more effective phototherapeutic agents.


Assuntos
Timina/análogos & derivados , Teoria da Densidade Funcional , Modelos Químicos , Timina/química , Timina/efeitos da radiação , Raios Ultravioleta
4.
Bioact Mater ; 5(2): 364-376, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206738

RESUMO

Basically, Mg-Al layered double hydroxide (LDH) coatings are prepared on the surface of micro-arc oxidation (MAO) coated magnesium (Mg) alloys at a high temperature or a low pH value. This scenario leads to the growth rate of LDH coating inferior to the dissolution rate of the MAO coating. This in turn results in limited corrosion resistance of the composite coating. In this study, a Mg-Al LDH coating on MAO-coated Mg alloy AZ31 is prepared through a water bath with a higher pH (13.76) at a lower temperature (60 °C). FE-SEM, EDS, XRD, XPS, and FT-IR are applied to analyze the surface morphology, chemical compositions, and growth process. Electrochemical polarization, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests are employed to evaluate the corrosion resistance of the samples. The results disclose that the MAO coating is completely covered by the nanosheet-structured LDH coating with a thickness of approximately 3.8 µm. The corrosion current density of the MAO-LDH composite coating is decreased four orders of magnitude in comparison to its substrate; the presence of a wide passivation region in anodic polarization branch demonstrates its strong self-healing ability, indicating the hybrid coating possesses excellent corrosion resistance. The formation mechanism of the LDH coating on the MAO-coated Mg alloy is proposed. Furthermore, the cytocompatibility is assessed via an indirect extraction test for MC3T3-E1 pre-osteoblasts, which indicates an acceptable cytocompatibility of osteoblasts for the composite coating.

5.
Acta Biomater ; 98: 196-214, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31154057

RESUMO

A Zinc-loaded montmorillonite (Zn-MMT) coating was hydrothermally prepared using Zn2+ ion intercalated sodium montmorillonite (Na-MMT) upon magnesium (Mg) alloy AZ31 as bone repairing materials. Biodegradation rate of the Mg-based materials was studied via potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and hydrogen evolution tests. Results revealed that both Na-MMT and Zn-MMT coatings exhibited better corrosion resistance in Dulbecco's modified eagle medium (DMEM) + 10% calf serum (CS) than bare Mg alloy AZ31 counterparts. Hemolysis results demonstrated that hemocompatibility of the Na-MMT and Zn-MMT coatings were 5%, and lower than that of uncoated Mg alloy AZ31 pieces. In vitro MTT tests and live-dead stain of osteoblast cells (MC3T3-E1) indicated a significant improvement in cytocompatibility of both Na-MMT and Zn-MMT coatings. Antibacterial properties of two representative bacterial strains associated with device-related infection, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), were employed to explore the antibacterial behavior of the coatings. The measured inhibitory zone and bacterial growth rate confirmed that Zn-MMT coatings exhibited higher suppression toward both E. coli and S. aureus than that of Na-MMT coatings. The investigation on antibacterial mechanism through scanning electron microscopy (SEM) and lactate dehydrogenase (LDH) release assay manifested that Zn-MMT coating led to severe breakage of bacterial membrane of E. coli and S. aureus, which resulted in a release of cytoplasmic materials from the bacterial cells. In addition, the good inhibition of Zn-MMT coatings against E. coli and S. aureus might be attributed to the slow but sustainable release of Zn2+ ions (up to 144 h) from the coatings into the culture media. This study provides a novel coating strategy for manufacturing biodegradable Mg alloys with good corrosion resistance, biocompatibility and antibacterial activity for future orthopedic applications. STATEMENT OF SIGNIFICANCE: The significance of the current work is to develop a corrosion-resistant and antibacterial Zn-MMT coating on magnesium alloy AZ31 through a hydrothermal method. The Zn-MMT coating on magnesium alloy AZ31 shows better corrosion resistance, biocompatibility and excellent antibacterial ability than magnesium alloy AZ31. This study provides a novel coating on Mg alloys for future orthopedic applications.


Assuntos
Implantes Absorvíveis , Ligas/farmacologia , Antibacterianos/farmacologia , Bentonita/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Magnésio/farmacologia , Zinco/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Espectroscopia Dielétrica , Eletroquímica , Escherichia coli/efeitos dos fármacos , Hemólise , Humanos , Íons , L-Lactato Desidrogenase/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
6.
Phys Chem Chem Phys ; 21(8): 4176-4183, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724277

RESUMO

The disulfide bond is prone to ultraviolet light-induced cleavage, but the microscopic details of the light-activated bond breakage remain elusive. Here, we carry out quantum chemical calculations and the first TSH simulation of the excited state dynamics of disulfides at the MS-CASPT2 level. We demonstrate that during relaxation of the S1 state, IC to the S2 state is the predominant relaxation pathway and efficient ISC to the T2 state is geometry-dependent. Moreover, the bond cleavage leads to a strong coupling region of singlet-triplet quasidegeneracy and enlarged SOC, from which both returning to the S0 state and effective triplet formation happen. On the basis of the simulation results, the proposed electronic relaxation mechanism of light-activated disulfides is S1 → S2(T2) → region of singlet-triplet quasidegeneracy → S0, which emphasizes the competitive participation of the triplet states in the relaxation dynamics of disulfides. This theoretical work provides insights into the intrinsic excited-state properties of disulfide molecules.


Assuntos
Dissulfetos/química , Dissulfetos/efeitos da radiação , Fotólise , Cinética , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Estabilidade Proteica , Teoria Quântica , Relação Estrutura-Atividade , Termodinâmica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...