Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Recent Pat Nanotechnol ; 18(2): 237-255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37069716

RESUMO

BACKGROUND: Resistive random-access memory (RRAM) is considered to be the most promising next-generation non-volatile memory because of its low cost, low energy consumption, and excellent data storage characteristics. However, the on/off (SET/RESET) voltages of RRAM are too random to replace the traditional memory. Nanocrystals (NCs) offer an appealing option for these applications since they combine excellent electronic/optical properties and structural stability and can address the requirements of low-cost, large-area, and solution-processed technologies. Therefore, the doping NCs in the function layer of RRAM are proposed to localize the electric field and guide conductance filaments (CFs) growth. OBJECTIVE: The purpose of this article is to focus on a comprehensive and systematical survey of the NC materials, which are used to improve the performance of resistive memory (RM) and optoelectronic synaptic devices and review recent experimental advances in NC-based neuromorphic devices from artificial synapses to light-sensory synaptic platforms. METHODS: Extensive information related to NCs for RRAM and artificial synapses and their associated patents were collected. This review aimed to highlight the unique electrical and optical features of metal and semiconductor NCs for designing future RRAM and artificial synapses. RESULTS: It was demonstrated that doping NCs in the function layer of RRAM could not only improve the homogeneity of SET/RESET voltage but also reduce the threshold voltage. At the same time, it could still increase the retention time and provide the probability of mimicking the bio-synapse. CONCLUSION: NC doping can significantly enhance the overall performance of RM devices, but there are still many problems to be solved. This review highlights the relevance of NCs for RM and artificial synapses and also provides a perspective on the opportunities, challenges, and potential future directions.

2.
Chemosphere ; 180: 186-191, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407548

RESUMO

Arsenic emission from fuel combustion and metal smelting flue gas causes serious pollution. Addition of sorbents is a promising way for the arsenic capture from high temperature flue gas. However, it is difficult to remove arsenic from SO2/HCl-rich flue gas due to the competitive reaction of the sorbents with arsenic and these acid gases. To solve this problem, arsenic adsorption over γ-Al2O3 was studied in this work to evaluate its adsorption mechanism, resistance to acid gases as well as regeneration behavior. The results show that γ-Al2O3 had good resistance to acid gases and the arsenic adsorption by γ-Al2O3 could be effectively carried out at a wide temperature range between 573 and 1023 K. Nevertheless, adsorption at higher-temperature (like 1173 K) leaded to the decrease of surface area and the rearrangement of crystal structure of γ-Al2O3, reducing the active sites for arsenic adsorption. The adsorption of arsenic was confirmed to occur at different active sites in γ-Al2O3 by forming various adsorbed species. Increasing temperature facilitated arsenic transformation into more stable chemisorbed As3+ and As5+ which were difficult to remove through thermal treatment regeneration. Fortunately, the regeneration of spent γ-Al2O3 could be well performed using NaOH solution.


Assuntos
Óxido de Alumínio/química , Arsênio/química , Modelos Químicos , Ácidos , Adsorção , Carvão Mineral , Gases/química , Metais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA