Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Environ Res ; 260: 119553, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964573

RESUMO

Evidence regarding the link between long-term ambient ozone (O3) exposure and childhood sleep disorders is little. This study aims to examine the associations between long-term exposure to O3 and sleep disorders in children. We conducted a population-based cross-sectional survey, including 185,428 children aged 6-18 years in 173 schools across 14 Chinese cities during 2012 and 2018. Parents or guardians completed a checklist using Sleep Disturbance Scale for Children, and O3 exposure at residential and school addresses was estimated using a satellite-based spatiotemporal model. We used generalized linear mixed models to test the associations with adjustment for factors including socio-demographic variables, lifestyle, meteorology and multiple pollutants. Mean concentrations of O3, particulate matter with diameters ≤2.5 mm (PM2.5) and nitrogen dioxide (NO2) were 89.0 µg/m3, 42.5 µg/m3 and 34.4 µg/m3, respectively. O3 and NO2 concentrations were similar among provinces, while PM2.5 concentration varied significantly among provinces. Overall, 19.4% of children had at least one sleep disorder. Long-term exposure to O3 was positively associated with odds of sleep disorders for all subtypes. For example, each interquartile increment in home-school O3 concentrations was associated with a higher odds ratio for global sleep disorder, at 1.22 (95% confidence interval: 1.18, 1.26). Similar associations were observed for sleep disorder subtypes. The associations remained similar after adjustment for PM2.5 and NO2. Moreover, these associations were heterogeneous regionally, with more prominent associations among children residing in southeast region than in northeast and northwest regions in China. We concluded that long-term exposure to O3 is positively associated with risks of childhood sleep disorders. These associations varied by geographical region of China.

2.
Environ Res ; 241: 117635, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972813

RESUMO

Information on the spatio-temporal patterns of the burden of ischemic heart disease (IHD) caused by ambient ambient fine particulate matter (PM2.5) in the global level is needed to prioritize the control of ambient air pollution and prevent the burden of IHD. The Global Burden of Disease Study (GBD) 2019 provides data on IHD attributable to ambient PM2.5. The IHD burden and mortality attributable to ambient PM2.5 were analyzed by year, age, gender, socio-demographic index (SDI) level, geographical region and country. Estimated annual percentage change (EAPC) was calculated to estimate the temporal trends of age-standardized mortality rate (ASMR) and age-standardized disability-adjusted life years rate (ASDR) from 1990 to 2019. Globally, the ASMR and ASDR for ambient PM2.5-related IHD tended to level off generally, with EAPC of -0.03 (95% CI: -0.06, 0.12) and 0.3 (95% CI: 0.22, 0.37), respectively. In the past 30 years, there were obvious differences in the trend of burden change among different regions. A highest increased burden was estimated in low-middle SDI region (EAPC of ASMR: 3.73 [95% CI: 3.56, 3.9], EAPC of ASDR: 3.83 [95% CI: 3.64, 4.02]). In contrast, the burden in high SDI region (EAPC of ASMR: -4.48 [95% CI: -4.6, -4.35], EAPC of ASDR: -3.98 [95% CI: -4.12, -3.85]) has declined most significantly. Moreover, this burden was higher among men and older populations. EAPCs of the ASMR (R = -0.776, p < 0.001) and ASDR (R = -0.781, p < 0.001) of this burden had significant negative correlations with the countries' SDI level. In summary, although trends in the global burden of IHD attributable to ambient PM2.5 are stabilizing, but this burden has shifted from high SDI countries to middle and low SDI countries, especially among men and elderly populations. To reduce this burden, the air pollution management prevention need to be further strengthened, especially among males, older populations, and middle and low SDI countries.


Assuntos
Poluição do Ar , Isquemia Miocárdica , Idoso , Masculino , Humanos , Carga Global da Doença , Poluição do Ar/efeitos adversos , Poluição Ambiental , Isquemia Miocárdica/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Saúde Global
3.
Environ Sci Technol ; 57(51): 21570-21580, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-37989488

RESUMO

The limited characterization and detection capacity of unknown compounds hinder our understanding of the molecular composition of toxic compounds in PM2.5. The present study applied Fourier transform ion cyclotron resonance mass spectrometry coupled with negative and positive electrospray ionization sources (ESI-/ESI+ FT-ICR-MS) to probe the molecular characteristics and dynamic formation processes of the effective proinflammatory components in organic aerosols (OAs) of PM2.5 in Guangzhou for one year. We detected abundant proinflammatory molecules in OAs, mainly classified as CHON compounds (compounds composed of C, H, O, and N atoms) in elemental and nitroaromatic compounds (NACs) in structures. From the perspective of the formation process, we discovered that these proinflammatory molecules, especially toxic NACs, were largely driven by secondary nitrate formation and biomass burning (in emission source), as well as SO2 (in atmospheric evolution). In addition, our results indicated that the secondary processes had replaced the primary emission as the main contributing source of the toxic proinflammatory compounds in OAs. This study highlights the importance of community measures to control the production of nitroaromatic compounds derived from secondary nitrate formation and biomass burning in urban areas.


Assuntos
Nitratos , Compostos Orgânicos , Nitratos/análise , Biomassa , Espectrometria de Massas , Compostos Orgânicos/análise , Material Particulado/análise , Aerossóis/análise , Bioensaio
4.
Curr Environ Health Rep ; 10(4): 501-507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030873

RESUMO

PURPOSE OF REVIEW: The increasing prevalence of cardiometabolic risk factors (CRFs) contributes to the rise in cardiovascular disease. Previous research has established a connection between air pollution and both the development and severity of CRFs. Given the ongoing impact of air pollution on human health, this review aims to summarize the latest research findings and provide an overview of the relationship between different types of air pollutants and CRFs. RECENT FINDINGS: CRFs include health conditions like diabetes, obesity, hypertension etc. Air pollution poses significant health risks and encompasses a wide range of pollutant types, air pollutants, such as particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O2). More and more population epidemiological studies have shown a positive correlation between air pollution and CRFs. Although various pollutants have diverse effects on specific cellular molecular pathways, their main influence is on oxidative stress, inflammation response, and impairment of endothelial function. More and more studies have proved that air pollution can promote the occurrence and development of cardiovascular and metabolic risk factors, and the research on the relationship between air pollution and CRFs has grown intensively. An increasing number of studies are using new biological monitoring indicators to assess the occurrence and development of CRFs resulting from exposure to air pollution. Abnormalities in some important biomarkers in the population (such as homocysteine, uric acid, and C-reactive protein) caused by air pollution deserve more attention. Further research is warranted to more fully understand the link between air pollution and novel CRF biomarkers and to investigate potential prevention and interventions that leverage the mechanistic link between air pollution and CRFs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Ozônio , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/análise , Dióxido de Nitrogênio/análise , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/induzido quimicamente , Biomarcadores , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
5.
Int J Hyg Environ Health ; 254: 114258, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37703624

RESUMO

Anthropogenic heat has been reported to have significant health impacts, but research on its association with childhood adiposity is still lacking. In this study, we matched the 2008-2012 average anthropogenic heat flux, as simulated by a grid estimation model using inventory methods, with questionnaire and measurement data of 49,938 children randomly recruited from seven cities in Northeast China in 2012. After adjusting for social demographic and behavioral factors, we used generalized linear mixed-effect models to assess the association between anthropogenic heat flux and adiposity among children. We also examined the effect modification of various social demographic and behavioral confounders. We found that each 10 W/m2 increase in total anthropogenic heat flux and that from the industry source was associated with an increase of 5.82% (95% CI = 0.84%-11.05%) and 6.62% (95% CI = 0.87%-12.70%) in the odds of childhood adiposity. Similarly, the excess rate of adiposity among children were 5.26% (95% CI = -1.33%-12.29%) and 8.51% (95% CI = 2.24%-15.17%) per 1 W/m2 increase in the anthropogenic heat flux from transportation and buildings, and was 7.94% (95% CI = 2.28%-13.91%) per 0.001 W/m2 increase in the anthropogenic heat flux from human metabolism. We also found generally greater effect estimates among female children and children who were exposed to passive smoking during pregnancy, born by caesarean section, non-breastfed/mixed-fed, or lived within 20 m adjacent to the main road. The potential deleterious effect of anthropogenic heat exposure on adiposity among children may make it a new but major threat to be targeted by future mitigation strategies.


Assuntos
Adiposidade , Temperatura Alta , Criança , Humanos , Feminino , Gravidez , Cesárea , China/epidemiologia , Obesidade , Atividades Humanas
6.
Environ Pollut ; 325: 121430, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924913

RESUMO

Studies have shown that water-insoluble organic matter (WIOM) accounts for a large part of the organic components in cloud water and significantly contributes to brown carbon. However, the molecular characteristics of WIOM in cloud droplets remain unclear, hampering the understanding of their climate effects. In this study, cloud water was collected at a remote mountain site in South China during the winter of 2020, and WIOM was separated by membrane filtration, extracted by methanol, and characterized using Fourier transform ion cyclotron resonance mass spectrometry coupled with an electrospray ionization source. A total of 697-1637 molecules were identified in WIOM. WIOM is characterized by lower oxidation states of carbon atoms (-1.10 âˆ¼ -0.84 in WIOM vs. -0.58 âˆ¼ -0.51 in water-soluble organic matter (WSOM) on average), higher carbon number (14.12-20.59 vs. 9.87-10.56) and lower unsaturation (double-bond equivalent 4.55-4.95 vs. 4.84-5.23) relative to WSOM. More abundant lipid-like compounds (12.2-41.9% in WIOM vs. <2% in WSOM) but less highly oxygenated compounds (<7% vs. 28.6-35.3%) exist in WIOM. More than 30% of WIOM molecules in cloud water are common with interstitial particles, implying that WIOM in cloud water may originate from aerosol activation and/or collision. Some unique molecules in WIOM in cloud water are identified as aqueous-phase oligomerization products, indicating the aqueous-phase formation of WIOM. Further analysis of the intermolecular relationship shows that WIOM has the potential to transform into WSOM by partitioning into the dissolved phase, oxidation and functionalization by heteroatom-containing groups, representing a previously unidentified pathway for WSOM formation in cloud water. The results provide new insights into the in-cloud chemistry, which would assist in the understanding of the aqueous formation and evolution of WIOM.


Assuntos
Carbono , Água , Água/química , Espectrometria de Massas , Carbono/análise , Estações do Ano , Aerossóis/análise
7.
Sci Total Environ ; 873: 162432, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841415

RESUMO

Automobile exhaust is a major source of volatile organic compounds (VOCs) in metropolitan areas, yet it is difficult to accurately determine the contributions of different types of on-road vehicles. Tunnel tests are an effective way to measure real-world vehicle emissions, and the data collected are also suitable for receptor modeling to analyze the contributions of non-methane hydrocarbons (NMHCs) from different types of vehicles, as the closed environment ensures good mixing and minimal aging. In this study, tunnel tests were conducted inside a heavily trafficked city tunnel in Guangzhou in south China, and the positive matrix factorization (PMF) model was applied to the inlet-outlet incremental NMHC data. The results revealed that gasoline vehicles (GVs), Liquefied Petroleum Gas vehicles (LPGVs), and diesel vehicles (DVs) were responsible for 39 %, 45 % and 16 % of NMHCs, and 52 %, 23 %, and 24 % of the ozone formation potentials, respectively. LPGVs were the largest contributor of (56 %) alkanes, and GVs were the largest contributor of aromatics (61 %) and C2-C4 alkenes (55 %). With the video-recorded traffic counts the emissions of different fuel types are further compared on a per-vehicle-per-kilometer basis, and the results reveal that LPGVs and GVs were comparable in the OFPs of NMHCs emitted per kilometer, while on average a DV emitted 2.0 times more NMHCs than a GV with 2.4 times more OFPs. This study highlights substantial contribution of reactive alkenes and aromatics by DVs and the benefits of strengthening diesel exhaust control in terms of preventing ozone pollution.

8.
Environ Int ; 173: 107820, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36842384

RESUMO

Identify risk drivers is the key condition in air pollution control, and biological effect-directed analysis is the most commented method for combing chemical identify and human health. The water-soluble organic matter contained in PM2.5 plays an important role in human health, while it is also the most difficult to identify its chemical information. Exploring the structural characteristics and pollution sources of its key toxic components is the optimized strategy to meet this question. In this study, the induction of apoptosis by the water-soluble fractions (WSF) of PM2.5 samples collected in 10 major cities in China over a period of 1 year was observed in vitro in Beas-2b cells. Organic carbon structures were examined using nuclear magnetic resonance; air potential sources were identified using δ13C and 14C isotopic markers. Apoptosis induction by WSF in PM2.5 was generally stronger in northern cities than in southern cities, and in winter than in summer. Organic compounds with aromatic and double-bond carbon structures from secondary products of motor vehicle exhausts, coal-derived emissions, and emissions derived from the burning of core residues may be primarily responsible for apoptosis induction by PM2.5. Our results will contribute to understanding the toxic substances contained in WSF and provide basic data for accurate pollution control.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Água/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , China , Apoptose , Estações do Ano , Carbono/análise , Aerossóis/análise
9.
Environ Pollut ; 307: 119459, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568288

RESUMO

Urban and regional ozone (O3) pollution is a public health concern and causes damage to ecosystems. Due to the diverse emission sources of O3 precursors and the complex interactions of air dispersion and chemistry, identifying the contributing sources of O3 pollution requires integrated analysis to guide emission reduction plans. In this study, the meteorological characteristics leading to O3 polluted days (in which the maximum daily 8-h average O3 concentration is higher than the China Class II National O3 Standard (160 µg/m3)) in Guangzhou (GZ, China) were analyzed based on data from 2019. The O3 formation regimes and source apportionments under various prevailing wind directions were evaluated using a Response Surface Modeling (RSM) approach. The results showed that O3 polluted days in 2019 could be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, and high pressure approaching to sea) and were strongly correlated with high ambient temperature, low relative humidity, low wind speed, variable prevailing wind directions. Additionally, the cyclone pattern strongly promoted O3 formation due to its peripheral subsidence. The O3 formation was nitrogen oxides (NOx)-limited under the northerly wind, while volatile organic compounds (VOC)-limited under other prevailing wind directions. Anthropogenic emissions contributed largely to the O3 formation (54-78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only moderately (35-47%) under the northerly or northeasterly wind. Furthermore, as for anthropogenic contributions, local emission contributions were the largest (39-60%) regardless of prevailing wind directions, especially the local NOx contributions (19-43%); the dominant upwind regional emissions contributed 12-46% (e.g., contributions from Dongguan were 12-20% under the southeasterly wind). The emission control strategies for O3 polluted days should focus on local emission sources in conjunction with the emission reduction of upwind regional sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Ecossistema , Monitoramento Ambiental/métodos , Meteorologia , Ozônio/análise
10.
J Environ Sci (China) ; 114: 233-248, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459489

RESUMO

The conventional Ensemble Kalman filter (EnKF), which is now widely used to calibrate emission inventories and to improve air quality simulations, is susceptible to simulation errors of meteorological inputs, making accurate updates of high temporal-resolution emission inventories challenging. In this study, we developed a novel meteorologically adjusted inversion method (MAEInv) based on the EnKF to improve daily emission estimations. The new method combines sensitivity analysis and bias correction to alleviate the inversion biases caused by errors of meteorological inputs. For demonstration, we used the MAEInv to inverse daily carbon monoxide (CO) emissions in the Pearl River Delta (PRD) region, China. In the case study, 60% of the total CO simulation biases were associated with sensitive meteorological inputs, which would lead to the overestimation of daily variations of posterior emissions. Using the new inversion method, daily variations of emissions shrank dramatically, with the percentage change decreased by 30%. Also, the total amount of posterior CO emissions estimated by the MAEInv decreased by 14%, indicating that posterior CO emissions might be overestimated using the conventional EnKF. Model evaluations using independent observations revealed that daily CO emissions estimated by MAEInv better reproduce the magnitude and temporal patterns of ambient CO concentration, with a higher correlation coefficient (R, +37.0%) and lower normalized mean bias (NMB, -17.9%). Since errors of meteorological inputs are major sources of simulation biases for both low-reactive and reactive pollutants, the MAEInv is also applicable to improve the daily emission inversions of reactive pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monóxido de Carbono/análise , China , Monitoramento Ambiental/métodos , Rios
11.
Environ Pollut ; 305: 119306, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35430310

RESUMO

Previous studies have indicated that outdoor light at night (LAN) is associated with a higher prevalence of overweight or obesity in adults. However, the association of LAN levels with overweight or obesity in children is still unknown. This study utilized data from the Seven Northeastern Cities study, which included 47,990 school-aged children and adolescents (ages 6-18 years). Outdoor LAN levels were measured using satellite imaging data. Weight and height were used to calculate age-sex-specific body mass index (BMI) Z-scores based on the World Health Organization (WHO) growth standards. Overweight status and obesity were defined using the Chinese standard. Information regarding socioeconomic status, sleep-related characteristics, and obesogenic factors were obtained using a questionnaire. A generalized linear mixed model examined the associations of outdoor LAN levels (in quartiles) with the outcomes of interest. Compared to children in the lowest quartile of outdoor LAN levels, children exposed to higher outdoor LAN levels had larger BMI Z-scores and higher odds of being overweight (including obesity) or obese, with the largest estimates in the third quartile [BMI Z-score: ß = 0.26, 95% CI: 0.18-0.33; overweight (including obesity): OR = 1.40, 95% CI: 1.25-1.56; obesity: OR = 1.46, 95% CI: 1.29-1.65]. There was a significant sex difference (Pinteraction<0.001) in the association of outdoor LAN levels with BMI Z-scores, and the association was stronger in males. Results remained robust following multiple sensitivity analyses and the adjustment of sleep-related characteristics, obesogenic factors, and environmental exposures. Our findings suggest that higher outdoor LAN levels are associated with larger BMI Z-scores and greater odds of overweight (including obesity) and obesity in school-aged children and adolescents. Further, the association between outdoor LAN levels and BMI Z-scores is stronger in males. Future studies with exposure assessments that consider both outdoor and indoor LAN exposures are needed.


Assuntos
Iluminação , Sobrepeso , Obesidade Infantil , Adolescente , Índice de Massa Corporal , Criança , China/epidemiologia , Feminino , Humanos , Poluição Luminosa , Masculino , Sobrepeso/epidemiologia , Obesidade Infantil/epidemiologia , Instituições Acadêmicas , Sono
12.
Sci Total Environ ; 823: 153720, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149077

RESUMO

During the COVID-19 lockdown, ambient ozone levels are widely reported to show much smaller decreases or even dramatical increases under substantially reduced precursor NOx levels, yet changes in ambient precursor volatile organic compounds (VOCs) have been scarcely reported during the COVID-19 lockdown, which is an opportunity to examine the impacts of dramatically changing anthropogenic emissions on ambient VOC levels in megacities where ozone formation is largely VOC-limited. In this study, ambient VOCs were monitored online at an urban site in Guangzhou in the Pearl River Delta region before, during, and after the COVID-19 lockdown. The average total mixing ratios of VOCs became 19.1% lower during the lockdown than before, and those of alkanes, alkenes and aromatics decreased by 19.0%, 24.8% and 38.2%, respectively. The levels of light alkanes (C < 6) decreased by only 13.0%, while those of higher alkanes (C ≥ 6) decreased by 67.8% during the lockdown. Disappeared peak VOC levels in morning rush hours and the drop in toluene to benzene ratios during the lockdown suggested significant reductions in vehicle exhaust and industrial solvent emissions. Source apportioning by positive matrix factorization model revealed that reductions in industrial emissions, diesel exhaust (on-road diesel vehicles and off-road diesel engines) and gasoline-related emissions could account for 48.9%, 42.2% and 8.8%, respectively, of the decreased VOC levels during the lockdown. Moreover, the reduction in industrial emissions could explain 56.0% and 70.0% of the reductions in ambient levels of reactive alkenes and aromatics, respectively. An average increase in O3-1 h by 17% and a decrease in the daily maximum 8-h average ozone by 11% under an average decrease in NOx by 57.0% and a decrease in VOCs by 19.1% during the lockdown demonstrated that controlling emissions of precursors VOCs and NOx to prevent ambient O3 pollution in megacities such as Guangzhou remains a highly challenging task.


Assuntos
Poluentes Atmosféricos , COVID-19 , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Ozônio/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
13.
Sci Total Environ ; 815: 152926, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998766

RESUMO

OBJECTIVES: Although the potential serious threat of anthropogenic heat on human health was receiving considerable attention worldwide, its long-term health effect on blood pressure (BP) remained unknown. We aimed to evaluate the associations of long-term anthropogenic heat exposure with different components of BP and hypertension. METHODS: In this cross-sectional study (Liaoning province, China) conducted in 2009, we included a total of 24,845 Chinese adults (18-74 years). We estimated the anthropogenic heat exposure in 2008 using multisource remote sensing images and ancillary data. We measured systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP), and defined hypertension. We used generalized linear mixed model to examine the associations. RESULTS: In the adjusted model, the estimates indicated that the difference in SBP, MAP and PP for those in highest quartiles of total anthropogenic heat exposure was greater compared with the lowest quartile (highest quartile: ß = 1.11 [95% CI: 0.28-1.94], 0.60 [95% CI: 0.04-1.17], 0.76 [95% CI: 0.17-1.35]). Compared with the lowest quartile, the odds of hypertension were higher among those in higher quartiles (second quartile: OR = 1.17 [95% CI: 1.05-1.30]; third quartile:1.10 [95% CI: 1.1.01-1.21]; highest quartile: 1.17 [95% CI: 1.06-1.28]). These associations were stronger in female participants. CONCLUSION: Our study showed that long-term exposure to anthropogenic heat was associated with elevated BP and higher odds of hypertension. These findings suggest that mitigation strategies to reduce anthropogenic heat should be considered.


Assuntos
Temperatura Alta , Hipertensão , Adulto , Pressão Sanguínea , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Hipertensão/epidemiologia , Hipertensão/etiologia , Fatores de Risco
14.
Environ Res ; 204(Pt D): 112397, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34798120

RESUMO

BACKGROUND: The widely used Air Quality Index (AQI) has been criticized due to its inaccuracy, leading to the development of the air quality health index (AQHI), an improvement on the AQI. However, there is currently no consensus on the most appropriate construction strategy for the AQHI. OBJECTIVES: In this study, we aimed to evaluate the utility of AQHIs constructed by different models and health outcomes, and determine a better strategy. METHODS: Based on the daily time-series outpatient visits and hospital admissions from 299 hospitals (January 2016-December 2018), and mortality (January 2017-December 2019) in Guangzhou, China, we utilized cumulative risk index (CRI) method, Bayesian multi-pollutant weighted (BMW) model and standard method to construct AQHIs for different health outcomes. The effectiveness of AQHIs constructed by different strategies was evaluated by a two-stage validation analysis and examined their exposure-response relationships with the cause-specific morbidity and mortality. RESULTS: Validation by different models showed that AQHI constructed with the BMW model (BMW-AQHI) had the strongest association with the health outcome either in the total population or subpopulation among air quality indexes, followed by AQHI constructed with the CRI method (CRI-AQHI), then common AQHI and AQI. Further validation by different health outcomes showed that AQHI constructed with the risk of outpatient visits generally exhibited the highest utility in presenting mortality and morbidity, followed by AQHI constructed with the risk of hospitalizations, then mortality-based AQHI and AQI. The contributions of NO2 and O3 to the final AQHI were prominent, while the contribution of SO2 and PM2.5 were relatively small. CONCLUSIONS: The BMW model is likely to be more effective for AQHI construction than CRI and standard methods. Based on the BMW model, the AQHI constructed with the outpatient data may be more effective in presenting short-term health risks associated with the co-exposure to air pollutants than the mortality-based AQHI and existing AQIs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Teorema de Bayes , China , Humanos , Morbidade , Material Particulado/análise
15.
Environ Health ; 20(1): 127, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34920730

RESUMO

BACKGROUND: Previous studies have revealed that current secondhand smoke exposure showed highly suggestive evidence for increased risk of simultaneous sleep problems in children. Data on the associations between early-life exposure to SHS with subsequent sleep problems in children were scarce. We aimed to evaluate the associations of early-life SHS exposure with sleep problems in children. METHODS: In this cross-sectional study, children were recruited from elementary and middle schools in Liaoning Province, China between April 2012 and January 2013. We assessed early-life SHS exposure (pregnancy and the first 2 years of life) via questionnaires. Sleep problems and different types of sleep-related symptoms were measured based on the validated tool of the Sleep Disturbance Scale for Children (SDSC). Generalized linear mixed models were applied to estimate the associations of early-life SHS exposure with sleep problems. RESULTS: We included a total of 45,562 children (22,657 [49.7%] males; mean [SD] age, 11.0 [2.6] years) and 6167 of them (13.5%) were exposed to early-life SHS during both pregnancy and the first 2 years of life. Compared with unexposed counterparts, children exposed to early-life SHS had higher total T-scores of SDSC (ß = 4.32; 95%CI: 4.06, 4.58) and higher odds of increased sleep problems (OR = 2.14; 95%CI: 1.89, 2.42). When considering different sleep-related symptoms, the associations between early-life SHS exposure and symptom of sleep-wake transition disorders (i.e., bruxism) were the strongest in all analyses. CONCLUSIONS: Early-life SHS exposure was associated with higher odds of global sleep problems and different sleep-related symptoms in children aged 6-18 years. Our findings highlight the importance to strengthen efforts to support the critical importance of maintaining a smoke-free environment especially in early life.


Assuntos
Transtornos do Sono-Vigília , Poluição por Fumaça de Tabaco , Criança , Estudos Transversais , Exposição Ambiental/análise , Feminino , Humanos , Masculino , Gravidez , Transtornos do Sono-Vigília/epidemiologia , Inquéritos e Questionários , Poluição por Fumaça de Tabaco/efeitos adversos
16.
Environ Sci Technol ; 55(23): 15616-15624, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34756032

RESUMO

Nitrous acid (HONO) is an important photochemical precursor to hydroxyl radicals particularly in an urban atmosphere, yet its primary emission and secondary production are often poorly constrained. Here, we measured HONO and nitrogen oxides (NOx) at both the inlet and the outlet in a busy urban tunnel (>30 000 vehicles per day) in south China. Multiple linear regression revealed that 73.9% of the inlet-outlet incremental HONO concentration was explained by NO2 surface conversion, while the rest was directly emitted from vehicles with an average HONO/NOx ratio of 1.31 ± 0.87%, which was higher than that from previous tunnel studies. The uptake coefficient of NO2, γ(NO2), on the tunnel surfaces was calculated to be (7.01 ± 0.02) × 10-5, much higher than that widely used in models. As tunnel surfaces are typical of urban surfaces in the wall and road materials, the dominance of HONO from surface reactions in the poorly lit urban tunnel demonstrated the importance of NO2 conversion on urban surfaces, instead of NO2 conversion on the aerosol surface, for both daytime and night-time HONO even in polluted ambient air. The higher γ(NO2) on urban surfaces and the elevated HONO/NOx ratio from this study can help explain the missing HONO sources in urban areas.


Assuntos
Ácido Nitroso , Emissões de Veículos , Aerossóis , Atmosfera , Dióxido de Nitrogênio
17.
Environ Sci Technol ; 55(14): 9740-9749, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34213322

RESUMO

Although organochlorine pesticides (OCPs) have been banned for more than three decades, their concentrations have only decreased gradually. This may be largely attributable to their environmental persistence, illegal application, and exemption usage. This study assessed the historic and current regional context for dichlorodiphenyltrichloroethane (DDT), chlordane, and hexachlorobenzene (HCB), which were added to the Stockholm Convention in 2001. An air sampling campaign was carried out in 2018 in nine cities of the Pearl River Delta (PRD), where the historical OCP application was the most intensive in China. Different seasonalities were observed: DDT exhibited higher concentrations in summer than in winter; chlordane showed less seasonal variation, whereas HCB was higher in winter. The unique coupling of summer monsoon with DDT-infused paint usage, winter monsoon with HCB-combustion emission, and local chlordane emission jointly presents a dynamic picture of these OCPs in the PRD air. We used the BETR Global model to back-calculate annual local emissions, which accounted for insignificant contributions to the nationally documented production (<1‰). Local emissions were the main sources of p,p'-DDT and chlordane, while ocean sources were limited (<4%). This study shows that geographic-anthropogenic factors, including source, history, and air circulation pattern, combine to affect the regional fate of OCP compounds.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , China , Clordano/análise , DDT/análise , Monitoramento Ambiental , Hexaclorobenzeno/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Rios
18.
JAMA Netw Open ; 4(5): e2110931, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34014325

RESUMO

Importance: Few studies have investigated the association between the exposure window (prenatal, early postnatal, and current period) of secondhand smoke (SHS) and attention-deficit/hyperactivity disorder (ADHD) symptoms and subtypes in children. Objective: To evaluate the associations of prenatal, early postnatal, or current SHS exposure with ADHD symptoms and subtypes among school-aged children. Design, Setting, and Participants: In this cross-sectional study, 48 612 children aged 6 to 18 years from elementary and middle schools in Liaoning province, China, between April 2012 and January 2013 were eligible for participation. Data on SHS exposure and ADHD symptoms and subtypes for each child were collected via questionnaires administered to parents or guardians by school teachers. Data were analyzed from September 14 to December 2, 2020. Main Outcomes and Measures: The ADHD symptoms and subtypes (inattention, hyperactivity-impulsivity, and combined) were measured based on a validated tool developed from the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). Generalized linear mixed models were evaluated to estimate the association of SHS exposure with ADHD symptoms and subtypes. Results: A total of 45 562 participants completed the questionnaires and were included in this study (22 905 girls [50.3%]; mean [SD] age, 11.0 [2.6] years; 2170 [4.8%] with ADHD symptoms). Compared with their unexposed counterparts, children who were ever exposed (odds ratio [OR], 1.50; 95% CI, 1.36-1.66) or always exposed to SHS (OR, 2.88; 95% CI, 2.55-3.25) from pregnancy to childhood had higher odds of having ADHD symptoms and subtypes (ORs ranged from 1.46 [95% CI, 1.31-1.62] to 2.94 [95% CI, 2.09-4.13]). Compared with their unexposed counterparts, children with SHS exposure had higher odds of having ADHD symptoms when exposed in the prenatal period (OR, 2.28; 95% CI, 2.07-2.51), early postnatal period (OR, 1.47; 95% CI, 1.29-1.68), or current period (OR, 1.20; 95% CI, 1.09-1.31). Compared with their unexposed counterparts, children whose fathers smoked 10 or more cigarettes/d on both weekdays and weekends had higher odds of having ADHD symptoms and subtypes (ORs ranged from 1.48 [95% CI, 1.28-1.70] to 2.25 [95% CI, 1.29-3.93]). Conclusions and Relevance: Being exposed to SHS from pregnancy to childhood was associated with higher odds of having ADHD symptoms and subtypes among school-aged children, and the associations were somewhat stronger for SHS exposure during prenatal and early postnatal periods. Our findings highlight the important public health implications of reducing SHS exposure, which may decrease the health and economic burdens of individuals with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Exposição Ambiental/efeitos adversos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Avaliação de Sintomas , Poluição por Fumaça de Tabaco/efeitos adversos , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Criança , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Masculino , Razão de Chances , Gravidez
19.
Sci Total Environ ; 778: 146305, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030351

RESUMO

Understanding the intra-city variation of PM2.5 is important for air quality management and exposure assessment. In this study, to investigate the spatiotemporal variation of PM2.5 in Guangzhou, we developed land use regression (LUR) models using data from 49 routine air quality monitoring stations. The R2, adjust R2 and 10-fold cross validation R2 for the annual PM2.5 LUR model were 0.78, 0.72 and 0.66, respectively, indicating the robustness of the model. In all the LUR models, traffic variables (e.g., length of main road and the distance to nearest ancillary) were the most common variables in the LUR models, suggesting vehicle emission was the most important contributor to PM2.5 and controlling vehicle emissions would be an effective way to reduce PM2.5. The predicted PM2.5 exhibited significant variations with different land uses, with the highest value for impervious surfaces, followed by green land, cropland, forest and water areas. Guangzhou as the third largest city that PM2.5 concentration has achieved CAAQS Grade II guideline in China, it represents a useful case study city to examine the health and economic benefits of further reduction of PM2.5 to the lower concentration ranges. So, the health and economic benefits of reducing PM2.5 in Guangzhou was further estimated using the BenMAP model, based on the annual PM2.5 concentration predicted by the LUR model. The results showed that the avoided all cause mortalities were 992 cases (95% CI: 221-2140) and the corresponding economic benefits were 1478 million CNY (95% CI: 257-2524) (willingness to pay approach) if the annual PM2.5 concentration can be reduced to the annual CAAQS Grade I guideline value of 15 µg/m3. Our results are expected to provide valuable information for further air pollution control strategies in China.

20.
Sci Total Environ ; 778: 146251, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030391

RESUMO

Carbonaceous aerosols (CAs) take up a substantial fraction of fine particle (PM2.5) in the atmosphere, yet high temporal resolution and seasonal variations of their emission sources and formation mechanisms are still poorly characterized in the regions with strong anthropogenic activities. In this study, the spatiotemporal characteristics of CAs and their subfractions, i.e., organic carbon (OC) and elemental carbon (EC), were studied in one of China's key city clusters, the Pearl River Delta (PRD) region. Results show that the annual mean OC and EC concentrations are 5.89 ± 3.32 µg/m3 and 1.60 ± 1.00 µg/m3 at the urban site, respectively. Such levels are consistently higher than those at the regional site (4.94 ± 3.34 µg/m3 of OC and 1.45 ± 0.82 µg/m3 of EC), suggesting the strong impact of human activities on OC and EC concentration. Moreover, the OC concentration peak sharply appears at 19:00 across all seasons at the urban site due to the direct influence of traffic exhaust and cooking activities. At regional site, OC peaks in fall afternoon due to intensive photochemical reactions derived combustion-related secondary organic carbon (SOCcom) contributions to the downwind PRD region. Correlations between SOCcom and influence factors were found at both regional and urban sites, suggesting that SOCcom formation is more regionally homogenous and mainly originates from the Zhaoqing-Foshan-Jiangmen belt. In addition, there are significantly different formation mechanisms of non-combustion-related secondary organic carbon (SOCnon-com) in the downwind PRD region. This study provides a solid evidence for collaborative efforts in the mitigation of secondary aerosols in the PRD region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...