Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 126: 297-307, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503758

RESUMO

Anthropogenic and natural disturbance to inland aquatic ecosystems displays a notable spatial difference, yet data to measure these differences are scarce. This study encompasses 217 lakes distributed over five lake regions of China and elucidates the environmental factors determining the spatial variability of the water quality and trophic status. A significant correlation between human modification index in surrounding terrestrial systems (HMT) and trophic status of lake ecosystems (TSI) was found, and the regression slope in each region was similar except in the Qinghai-Tibet Plateau region. It was further noted that the pattern of environmental factor network (EF network) differed among freshwater and saline lakes. The EF network was complex for freshwater lakes in less human-influenced areas, but intensive man-made influence disrupted most relationships except for those between total nitrogen, total phosphorus, chlorophyll-a, and water turbidity. As for regions including saline lakes, correlations among water salinity and organic forms of carbon and nitrogen were apparent. Our results suggest that HMT and EF network can be useful indicators of the ecological integrity of local lake ecosystems, and integrating spatial information on a large scale provides conservation planners the option for evaluating the potential risk on inland aquatic systems.


Assuntos
Efeitos Antropogênicos , Ecossistema , Lagos , Nitrogênio , China
2.
Sci Total Environ ; 856(Pt 2): 158970, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162570

RESUMO

Color dissolved organic matter (CDOM) plays a key role in lacustrine ecosystems and its composition is commonly mediated by the allochthonous input and autochthonous production. Deep lakes have a strong in-lake processing, which highly affects the sources, composition and cycle of CDOM. Here, the second deepest lake (Lake Fuxian) in China was selected to investigate the effects of allochthonous input and in-lake processing on lacustrine CDOM in deep lakes. Firstly, a detailed survey on CDOM composition across Lake Fuxian in the top water layer and inflowing rivers was carried out in the wet season representing the allochthonous input. In addition, CDOM in Lake Fuxian was compared with those in other lakes with distinct catchment characteristics and lake morphology. The results showed that compared to lacustrine CDOM in Lake Fuxian, the riverine CDOM contained much more humic-like substances, resulting in the humic-like fluorescence intensity peaked at the confluence of rivers into Lake Fuxian. In contrast, CDOM in Lake Fuxian was dominated by the protein-like substance. Comparison of CDOM composition among Lake Fuxian (well-vegetated catchment, deep lakes) with other diverse lakes in China (shallow/deep lakes with poor-vegetated catchment, and shallow lakes with well-vegetated catchment) showed similar CDOM quality in all type lakes, which were dominated by non-humified and autochthonous CDOM. Yet, CDOM quantity increased as the orders of deep lakes within poor-vegetated (Tibetan deep lakes) < the deep lake within well-vegetated catchment (Lake Fuxian) < shallow lakes within poorly-vegetated catchment (Tibetan shallow lakes) < shallow lakes within well-vegetated catchment (lakes along the middle and lower reaches of Yangtze River). Our results evidenced that the effect of allochthonous input on CDOM composition could be counteracted by in-lake processing in deep lakes. For deep lakes, a comprehensive understanding of in-lake processing of CDOM is critical for predicting lacustrine DOM composition and cycle.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Ecossistema , Rios , Substâncias Húmicas/análise , China , Espectrometria de Fluorescência
3.
Zootaxa ; 5182(4): 377-388, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36095679

RESUMO

The rare freshwater copepod Eucyclops (Speratocyclops) productus Kiefer, 1939 from Lake Mandongco, Tibet Autonomous Region, China, is redescribed. This species was originally found and described from a pond south of Chushul village, and many of the details did not meet modern standards for describing the species. In this paper, the morphological characteristics of this species are described in detail and compared with other members of the subgenus Speratocyclops species recorded in China. The key features of the species are: 1) long caudal rami, 2) the coxal seta of the fourth pair of legs armed with long hairs in the proximal part and short denticles in the distal part, 3) the inner spine of the fifth pair of legs long and strong. An identification key to 22 species of Eucyclops known from China and adjacent areas is also provided.


Assuntos
Copépodes , Animais , China , Lagos
4.
Water Res ; 223: 118958, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994786

RESUMO

Large cyanobacterial colonies, which are unique niches for heterotrophic bacteria, are vital for blooming in eutrophic waters. However, the seasonal dynamics of molecular insights into microbes in these colonies remain unclear. Here, the community composition and metabolism pattern of microbes inhabiting large cyanobacterial colonies (> 120 µm, collected from Lake Taihu in China) were investigated monthly. The community structure of total microbes was mostly influenced by chlorophyll a (Chl a), total phosphorus (TP) concentration, dissolved oxygen, and temperature, whereas the colony-associated bacteria (excluding Cyanobacteria) were mostly influenced by total organic carbon, NO3-, and PO43- concentrations, indicating different response patterns of Cyanobacteria and the associated bacteria to water nutrient conditions. Metatranscriptomic data suggested that similar to that of Cyanobacteria, the gene expression patterns of the most active bacteria, such as Proteobacteria and Bacteroidetes, were not strictly dependent on season but separated by Chl a concentrations. Samples in July and September (high-bloom period) and February and March (non-bloom period) formed two distinct clusters, whereas those of other months (low-bloom period) clustered together. The accumulation of transcripts for pathways, such as phycobilisome from Cyanobacteria and bacterial chemotaxis and flagellum, phosphate metabolism, and sulfur oxidation from Proteobacteria, was enriched in high- and low-bloom periods than in non-bloom period. Network analyses revealed that Cyanobacteria and Proteobacteria exhibited coordinated transcriptional patterns in almost all divided modules. Modules had Cyanobacteria-dominated hub gene were positively correlated with temperature, Chl a, total dissolved phosphorus, and NH4+ and NO2- concentrations, whereas modules had Proteobacteria-dominated hub gene were positively correlated with TP and PO43-. These results indicated labor division might exist in the colonies. This study provided metabolic insights into microbes in large cyanobacterial colonies and would support the understanding and management of the year-round cyanobacterial blooms.


Assuntos
Cianobactérias , Microbiologia da Água , Carbono , Clorofila A , Cianobactérias/genética , Monitoramento Ambiental , Eutrofização , Regulação Bacteriana da Expressão Gênica , Lagos , Ficobilissomas/genética , Proteobactérias/genética
5.
Water Res ; 218: 118493, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489153

RESUMO

Response of aquatic organisms to eutrophication have been well reported, while less studies are available for the recovery of eutrophic lakes following a reduction in the external loading, especially for systems where nitrogen is reduced but the phosphorus concentration is maintained high due to internal loading. Diatoms are nitrate (NO3-N) opportunists but can also use ammonium (NH4-N). They may, therefore, be more sensitive to nitrogen reduction than other algae that typically prefer NH4-N. We document the variations of nutrients and diatoms in subtropical, eutrophic Lake Taihu over 28 yr during which a reduction of the external loading resulted from lake management. According to the results of change point analysis, data on environmental variables were divided into two periods (P1: 1992-2006; P2: 2007-2019) with two different seasons (WS: Winter-Spring; SA: Summer-Autumn), respectively. Compared with P1-WS, the concentration of NH4-N decreased significantly whereas NO3-N showed no significant change in P2-WS. In contrast, NH4-N concentrations were low and showed no significant changes in P1-SA and P2-SA and NO3-N decreased significantly in the latter period. Accordingly, NO3-N: NH4-N mass ratios in P1-SA and P2-WS were all significantly higher than those in P2-SA and P1-WS, respectively. The biomass of WS diatom increased significantly and the timing of the peak biomass shifted from P1-SA to P2-WS since 2007. The SEM analysis showed that NO3-N was retained as a statistically significant predictor for diatom biomass in P1-SA and significant effects of windspeed, zooplankton and NH4-N on diatom biomass in P2-WS. Windspeed and zooplankton have further changed the biomass of diatoms in the case of declining inorganic nitrogen. We conclude that the magnitude of vernal suppression or stimulation of diatom assemblages has increased, concomitant with the variations of NH4-N and NO3-N: NH4-N mass ratios. Diatoms response to NH4-N or NO3-N is apparently changing in response to water temperature in this eutrophic shallow lake. Thus, parallel reductions in external nitrogen loading, along with variations in dominant inorganic nitrogen, will stimulate the growth of diatom and therefore increase the total biomass of phytoplankton in still high internal phosphorus loading, which is should be regarded as a good sign of restoration measures.


Assuntos
Compostos de Amônio , Diatomáceas , Compostos de Amônio/análise , Animais , Biomassa , China , Eutrofização , Lagos , Nitratos/análise , Nitrogênio/análise , Óxidos de Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Estações do Ano , Zooplâncton
6.
Water Res ; 216: 118364, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367940

RESUMO

There have been many studies on the effects of eutrophication on beta diversity (ß-diversity) of species assemblages. However, few studies have focused on the effects of nutrient reduction on ß-diversity and community structure, and long-time series analyses are particularly scarce. We conducted a 19-year case study on the impacts of management intervention on the temporal ß-diversity of aquatic grazers in a lake at the Yangtze River Basin. In our study, we compared the changes in temporal ß-diversity as well as its two components, nestedness and turnover, and the synchrony of the rotifer community after management intervention. Our results showed that while the abundance of some sensitive species increased, there was no trend in species richness. Moreover, both the seasonality and interannual stabilities of rotifer assemblages increased. The species synchrony decreased in both spring and summer after management intervention. We also found that management intervention significantly reduced nutrient concentrations but not water clarity and phytoplankton abundance. The total nitrogen (TN): total phosphorous (TP) ratio was reduced after management intervention, causing an increase in the abundance of cyanobacteria that may contribute to the increase of rotifer synchrony in autumn. Our results imply that stable environmental fluctuations after management intervention may increase temporal ß-diversity and stability of herbivorous assemblages. However, imbalanced changes in TN and TP after management intervention may weaken the top-down control of zooplankton on phytoplankton and slow down water clarity improvement.


Assuntos
Lagos , Rotíferos , Animais , China , Eutrofização , Limnologia , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Fitoplâncton
7.
Eur J Protistol ; 82: 125844, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973632

RESUMO

The spatial and temporal planktonic ciliate community structure of a large shallow eutrophic lake was described in detail based on a monthly monitoring campaign over 2 years using the quantitative protargol stain approach. We found that there was a large variety and low constancy of ciliate plankton and a clear advantage of several small species. Balanion planctonicum, Rimostrombidium brachykinetum, and Urotricha farcta contributed 19.7%, 13.4%, and 10.7% to the total abundance, respectively. The ciliate community was significantly varied in different lake regions of different eutrophication levels, and the distribution of some of the main species, especially prostomatids and scuticociliatids, might be closely related to the nutrient level of the lake regions. The seasonal dynamics of ciliate taxa with similar functional feeding habits across regions at different trophic levels are more convergent than those of species with very different functions, and the top-down effect (cladocerans, rotifers), nutrition, and water temperature were the key factors shaping ciliate community structure. The results of this study accentuate the important effects of species functional diversity on community differences and may improve our knowledge of ciliate diversity and functional ecology in shallow eutrophic lakes.


Assuntos
Cilióforos , Lagos , China , Eutrofização , Plâncton
8.
Sci Total Environ ; 821: 153434, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090915

RESUMO

Human activities, such as land use change and eutrophication, threaten freshwater biodiversity and ecosystem function. In this study, we examined both the α- and ß-diversity of plankton communities, that is, bacteria/prokaryotic algae, eukaryotic algae, and zooplankton/metazoans, using both classical microscopy and high-throughput sequencing methods across 40 lakes of the Yangtze River Basin. The spatial variations in plankton communities were explained by environmental variables such as trophic status index (TSI) and environmental heterogeneity according to non-metric multidimensional scaling analyses, mantel tests, and structural equation model. Our results showed that the compositional dissimilarities of bacteria, cyanobacteria, eukaryotic algae, and metazoans all decreased with the increasing TSI values, and were significantly positively related to environmental dissimilarity. Both the species richness and compositional dissimilarity of zooplankton had positive effects on zooplankton/phytoplankton biomass ratio. Zooplankton diversity was not directly affected by TSI and environmental dissimilarity; however, it was indirectly affected by the biotic interactions with cyanobacteria or eukaryotic algae. In addition, there were significant positive relationships between bacteria/cyanobacteria and eukaryotic algae dissimilarities. Our results indicated that increased trophic status and decreased environmental dissimilarity as consequences of eutrophication may weaken the trophic cascading effects of planktonic food chain via reducing the top-down effects of zooplankton on phytoplankton.


Assuntos
Cianobactérias , Eutrofização , Plâncton , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Lagos , Fitoplâncton , Zooplâncton
9.
Ecol Evol ; 11(13): 8897-8909, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257935

RESUMO

The extent of intra-annual turnover in phytoplankton communities is directly associated with the overall diversity. However, our understanding of the underlying causes and effects of intra-annual turnover remains limited. In this study, we performed a two-season investigation of the phytoplankton composition in the lakes of the Yangtze River catchment in China in spring and summer 2012, which covered a regional spatial scale. We analyzed the Sørensen pairwise dissimilarity (ßsor) between the two seasons, their driving factors, and effects on resource use efficiency in phytoplankton. The results showed that the changes in phytoplankton composition from spring to summer were not synchronous among these lakes. The spatial environmental characteristics, temporal changes in environmental variables and the initial phytoplankton composition together explained the variation in ßsor for phytoplankton, and their explanatory powers and primary driving variables depended on the phytoplankton taxonomic groups. Among the driving variables, increased nitrogen level and seasonal temperature difference will promote spring-summer community turnover and then improve the phosphorus use efficiency of phytoplankton community. The species diversity of the initial community might increase its stability and slow the spring-summer shift in phytoplankton, especially in cyanobacteria and Chlorophyta. Our study highlights the understanding of the patterns and underlying causes of temporal beta diversity in freshwater phytoplankton communities.

10.
Sci Total Environ ; 752: 141839, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889275

RESUMO

Human activities can alter dissolved organic matter (DOM) in lakes through both direct (i.e., exporting DOM of anthropogenic sources) and indirect effects (i.e., enhancing the autochthonous production of DOM via nutrient loading). Distinguishing between the direct and indirect effects is important to better understand human impacts on aquatic systems, but it remains highly challenging due to the interdependence of associated environmental variables. Here, we demonstrated that disentangling the direct and indirect effects can be achieved through combining large-scale environmental monitoring with the Partial Least Squares Path Modeling (PLS-PM). We presented DOM data from 61 lakes within the floodplain of the Yangtze River (Lakes-YR), China, a region that has been subjected to intense anthropogenic disturbances. We analyzed the amount and composition of DOM through dissolved organic carbon (DOC), chromophoric DOM (CDOM), and fluorescent DOM (FDOM). Four fluorescence components were identified, including one tyrosine-like component, one tryptophan-like component, and two humic-like components. Most of the lakes were dominated by freshly produced DOM with small molecular weights and low humification. Results from the PLS-PM models showed that the autochthonous production was more important than anthropogenic inputs in mediating DOC and CDOM. In contrast, FDOM parameters in lakes were more sensitive to the direct, anthropogenic sources, including treated domestic, industrial wastewater, and the effluents of aquaculture. These sources can be identified by elevated FDOM content per DOC (FDOM: DOC ratio) relative to autochthonous DOM, suggesting the potential of using FDOM as a tracer to identify and monitor the contribution of anthropogenic organic matter to inland waters.

11.
Front Microbiol ; 10: 2016, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551958

RESUMO

Spatial and seasonal dynamics of picophytoplankton were investigated by flow cytometry over a year in Lake Fuxian, a deep and oligotrophic mountain lake in southwest China. The contribution of picophytoplankton to the total Chl-a biomass and primary production were 50.1 and 66.1%, respectively. Picophytoplankton were mainly composed of phycoerythrin-rich picocyanobacteria (PE-cells) and photosynthetic picoeukaryotes (PPEs). PPEs were dominant in spring, reaching a maximum cell density of 3.0 × 104 cell mL-1, while PE-cells were prevalent in other seasons. PE-cell abundance was relatively similar throughout the year, except for a decrease in summer during the stratification period, when nutrient concentration was low. High-throughput sequencing results from the sorted samples revealed that Synechococcus was the major PE-cell type, while Chrysophyceae, Dinophyceae, Chlorophyceae, Eustigmatophyceae, and Prymnesiophyceae were equally important PPEs. In spring, PPEs were mainly composed of Chlorophyceae and Trebouxiophyceae, while in summer, their dominance was replaced by that of Chrysophyceae and Prymnesiophyceae. Eustigmatophyceae and Chlorophyceae became the major PPEs in autumn, and Dinophyceae became the most abundant in winter. Single cells of Microcystis were usually detected in summer in the south, suggesting the deterioration of the water quality in Lake Fuxian.

12.
Microbiologyopen ; 7(6): e00608, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29573241

RESUMO

Worldwide cyanobacterial blooms greatly impair ecosystems in many eutrophic lakes and impact the microbial environment. In particular, large cyanobacterial colonies that are buoyant on the water surface may provide a distinct habitat for bacteria from other small particles that are suspended stably in the water column. To test this hypothesis, bacterial communities (excluding cyanobacteria) attached to large particles dominated by cyanobacterial colonies (>120 µm, LA), small particles (3-36 µm, SA), and free-living bacteria (0.2-3 µm, FL) were investigated monthly for a year in Lake Taihu, China. Results confirmed that the Shannon diversity index of LA was significantly lower than that of FL, which was lower than that of SA. Cytophagia and Alphaproteobacteria were specially enriched in LA. Although samples in each habitat collected during high- (May to November) and low-bloom seasons (December to April) were separated, all samples in LA were clustered and separated from SA and FL, which were also clustered during the same sampling seasons. In addition, the bacterial communities in LA were correlated with nitrate level, whereas FL and SA were correlated with nitrate level and temperature. Mantel analysis revealed that bacterial composition significantly correlated with the cyanobacterial composition in LA and FL but not in SA. These results indicate that LA provides distinct niches to bacteria, whereas the differentiation of bacterial communities in FL and SA is seasonally dependent.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Lagos/microbiologia , Biodiversidade , China , Cianobactérias/classificação , Cianobactérias/genética , Lagos/química , Filogenia , Estações do Ano
13.
Sci Total Environ ; 625: 275-284, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29289776

RESUMO

The shape of the productivity-richness relationship (PRR) for phytoplankton has been suggested to be unimodal, that is, the richness peaks at intermediate productivity levels. However, the mechanistic understanding for this pattern is still widely debated. In this study, we observed a unimodal PRR within 71 lakes along the Yangtze River encompassing an altitude range of 0-2700m, and an over 2200km distance from the upper reaches to the lower reaches. At low productivity, the competition for resources and regulatory processes jointly affected phytoplankton richness and composition, and their explanatory power depend on the gradient scale of driving factors. The variation of temperature attributing to altitudinal difference explained the majority of the variations of phytoplankton. If the altitude variation in temperature was eliminated, the explanatory power of temperature decreased from 31.7 to 7.6, and the independent effect of each resource and regulatory variable were limited and not decisive. At high productivity, the negative feedback of increased productivity (light limitation) affected the phytoplankton species richness and composition. The light-sensitive species disappeared, low-light-adapted species was retained and the phytoplankton composition gradually became similar with an increase in productivity. The findings contribute to an increased understanding of the mechanisms resulting in a hump-shaped PRR for phytoplankton.


Assuntos
Altitude , Biodiversidade , Lagos , Fitoplâncton/classificação , Temperatura , China , Monitoramento Ambiental
14.
Sci Total Environ ; 579: 1203-1214, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27914644

RESUMO

Terrestrial chromophoric dissolved organic matter (CDOM) could subsidize lake food webs. Trophic state and altitude have a pronounced influence on the CDOM concentration and composition of a lake. The impact of future changes in solar radiation on high-altitude lakes is particularly alarming because these aquatic ecosystems experience the most pronounced radiation variation worldwide. Photodegradation experiments were conducted on terrestrial CDOM samples from oligotrophic alpine Lake Tiancai and low-altitude eutrophic Lake Xiaohu to investigate the response of bacterial growth to photodegraded CDOM. During the photo-irradiation process, the fluorescent CDOM intensity evidently decreased in an inflowing stream of Lake Tiancai, with the predominance of humic-like fluorescence. By contrast, minimal changes were observed in the riverine CDOM of Lake Xiaohu, with the predominance of protein-like fluorescence. The kinetic constants of photodegradation indicated that the degradation rate of terrestrial (soil) humic acid in Lake Tiancai was significantly higher than that in Lake Xiaohu (p<0.001). Soil humic and fulvic acids irradiated in the simulated experiment were applied to incubated bacteria. The specific growth rate of bacteria incubated with soil humic substances was significantly higher in Lake Tiancai than in Lake Xiaohu (p<0.05). Furthermore, the utilizing rate of dissolved oxygen (DO) confirmed that the DO consumption by bacteria incubated with terrestrial CDOM in Lake Tiancai was significantly greater than that in Lake Xiaohu (p<0.05). In summary, the exposure of terrestrial CDOM to light significantly enhances its availability to heterotrophic bacteria in Lake Tiancai, an oligotrophic alpine lake, which is of importance in understanding bacterial growth in response to photodegraded terrestrial CDOM for different types of lakes.


Assuntos
Bactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Substâncias Húmicas , Lagos/microbiologia , Poluentes da Água/análise , Altitude , Fluorescência , Fotólise
15.
Sci Total Environ ; 568: 216-225, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27300561

RESUMO

Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change.

16.
Eur J Protistol ; 53: 20-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26773905

RESUMO

Previous studies have shown that ciliate plankton is generally controlled by food resources (e.g., algae) and predators (e.g., metazooplankton). Among lakes with similar trophic levels but different distributions of phyto- and metazooplankton, the main forces acting on ciliate assemblages may be different. We investigated the relationship between ciliate communities and bottom-up versus top-down variables based on a survey of four subtropical eutrophic lakes (China). Two of the lakes (Chaohu, Taihu) are located on the Mid-lower Yangtze Plain near sea level, and the other two (Dianchi, Xingyunhu) on the Yunnan-Kweichow Plateau at 1700 m above sea level. Blooms of cyanobacteria developed during summer in Lakes Chaohu and Taihu and throughout the year in Lakes Dianchi and Xingyunhu. Ciliate functional feeding groups differed significantly between lakes. The results of canonical correspondence analysis (CCA) and variation partitioning showed that cyanobacteria significantly influence ciliate species, whereas 'edible' algae (cryptophytes, diatoms) and cladocerans were the important variables in explaining the ciliate community structure of Lakes Dianchi and Xingyunhu compared with Lakes Taihu and Chaohu. Our results highlight the importance of consistent cyanobacterial blooms in shaping the ciliate community in subtropical eutrophic shallow lakes by interacting with top-down and bottom-up factors.


Assuntos
Biodiversidade , Cilióforos/classificação , Cilióforos/fisiologia , Lagos/parasitologia , China , Criptófitas/fisiologia , Cianobactérias/fisiologia , Diatomáceas/fisiologia , Ecossistema , Eutrofização
17.
Photochem Photobiol Sci ; 14(5): 1047-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694220

RESUMO

Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.


Assuntos
Lagos/análise , China , Análise Fatorial , Fluorescência , Modelos Químicos , Peso Molecular , Espectrometria de Fluorescência , Temperatura , Raios Ultravioleta , Água/análise
18.
Dongwuxue Yanjiu ; 34(3): 204-8, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23775996

RESUMO

Potatso National Park was the first national park in mainland China, preceded by the earlier Bitahai Nature Reserve. Located in the northwest of Yunnan and on the southeast of Qinghai-Tibet plateau, Potatso is a typical low latitude and high elevation wetland nature reserve, with large areas of coniferous forest around alpine lakes and both wetland and water area ecosystems. In August, 2011, we undertook a survey of crustaceans in the park, sampling lakes, ponds, streams, and rivers throughout Potatso. We found a total of 29 species (including varieties) belonging to 24 genera and 11 families. Notable discoveries include Parartemiopsis sp, Arctodiaptomus parvispinus and Simocephalus congener, which are the first examples of these species to be recorded in China. Likewise, Gammarus bitaensis is a unique crustacean found only in Potatso National Park and Thermocyclops dumonti and Gammarus paucispinus are both endemic species to northwestern Yunnan. The overall faunal characteristics of crustaceans in the park also revealed several things about Potatso: (1) Cosmopolitan and Palaearctic elements reach 48.27% and 37.93%, clearly showing the Palaearctic element as the dominant fauna; (2) most of the crustacean, such as Arctodiaptomus parvispinus and Gammarus, are typical alpine types, confirming that Potatso has feature typical of alpine and plateau fauna; and (3) the proportion of endemic and rare crustacean species in Potatso National Park is approximately 10%, suggesting that the Potatso National Park in particular and the northwest of Yunnan in general have a unique geological and evolutionary history.


Assuntos
Biodiversidade , Crustáceos/classificação , Animais , Ecossistema , Tibet
19.
ScientificWorldJournal ; 11: 1442-54, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21805013

RESUMO

We evaluated the seasonal variation in the contributions of planktonic and benthic resources to 11 littoral predators in eutrophic Lake Taihu (China) from 2004 to 2005. Seasonal fluctuations in consumer delta 13C and delta 15N were attributed to the combined impacts of temporal variation in isotopic signatures of basal resources and the diet shift of fishes. Based on a two-end-member mixing model, all target consumers relied on energy sources from coupled benthic and planktonic pathways, but the predominant energy source for most species was highly variable across seasons, showing seasonal trophic shift of littoral consumers. Seasonality in energy mobilization of consumers focused on two aspects: (1) the species number of consumers that relied mainly on planktonic carbon showed the lowest values in the fall and the highest during spring/summer, and (2) most consumer species showed seasonal variation in the percentages of planktonic reliance. We concluded that seasonal trophic shifts of fishes and invertebrates were driven by phytoplankton production, but benthic resources were also important seasonally in supporting littoral consumers in Meiliang Bay. Energy mobilization of carnivorous fishes was more subject to the impact of resource availability than omnivorous species.


Assuntos
Eutrofização , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Estações do Ano , Animais , Biomassa , Isótopos de Carbono , China , Monitoramento Ambiental , Modelos Teóricos , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Comportamento Predatório
20.
Can J Microbiol ; 57(2): 115-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21326353

RESUMO

The genetic diversity of picoeukaryotes (0.2-5.0 µm) was investigated in 8 lakes differing in trophic status in Nanjing, China. Denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing of 18S rRNA genes were applied to analyze the picoeukaryotic communities. DGGE analysis showed that among the 8 lakes, the diversity of picoeukaryotes was greatest in the mesotrophic Lake Nan (24 bands) and least in the oligotrophic Lake Qian (12 bands). Cluster analysis of DGGE profiles revealed that the 8 lakes were grouped into 2 distinct clusters. Cluster 1 contained lakes Mochou, Zixia, Huashen, Nan, Pipa, and Qian, while cluster 2 contained lakes Xuanwu and Baijia. Clone libraries were constructed from the mesotrophic Lake Xuanwu and the oligotrophic Lake Zixia, and the 2 libraries were compared using the program LIBSHUFF. This analysis indicated that the picoeukaryotic community composition differed significantly between the 2 lakes (p = 0.001). A total of 25 operational taxonomic units were detected; 18 (62 clones) were related to known eukaryotic groups, while 7 (30 clones) were not affiliated with any known eukaryotic group. Alveolates and stramenopiles were the dominant groups in Lake Xuanwu, while alveolates and chlorophyta predominated in Lake Zixia. Multivariate statistical analysis indicated that the differences in the picoeukaryotic community composition of the 8 lakes might be related to trophic status and top-down regulation by metazooplankton.


Assuntos
Alveolados/genética , Clorófitas/genética , Variação Genética , Estramenópilas/genética , Microbiologia da Água , Alveolados/classificação , China , Clorófitas/classificação , Eletroforese em Gel de Gradiente Desnaturante , Água Doce/microbiologia , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Estramenópilas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...