Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomaterials ; 309: 122626, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795524

RESUMO

The development of manganese oxide-based chemodynamic immunotherapy is emerging as a key strategy against solid tumors. However, the limited efficacy of nanoplatform in inducing efficient tumor therapeutic effects and creating the prominent antitumor immune responses remains a crucial issue. In this study, we construct a novel multifunctional biomimetic nanovaccine comprising manganese oxide-loaded poly(2-diisopropylaminoethyl methacrylate) (MP) nanoparticles and a coating layer of hybrid cell membrane (RHM) derived from manganese oxide-remodeled 4T1 cells and dendritic cells (DCs) (collectively called MP@RHM) for combination chemodynamic immunotherapy. Compared with the nanovaccines coated with the single cell membrane, the MP@RHM nanovaccine highly efficiently activates both DCs and T cells to boost tumor-specific T cell, owing to the synergistic effects of abundant damage-associated molecular patterns, Mn2+, and T cell-stimulating moieties. Upon peritumoral injection, the MP@RHM nanovaccine targets both the tumor site for focused chemodynamic therapy and the lymph nodes for robust tumor-specific T cell priming, thereby achieving highly efficient chemodynamic immunotherapy. Moreover, as a preventive cancer nanovaccine, MP@RHM generates strong immunological memory to inhibit postoperative tumor metastasis and recurrence. Our study findings highlight a promising approach to construct a multifunctional biomimetic nanovaccine for personalized chemodynamic immunotherapy against solid tumors.


Assuntos
Vacinas Anticâncer , Imunoterapia , Compostos de Manganês , Óxidos , Linfócitos T , Compostos de Manganês/química , Animais , Vacinas Anticâncer/imunologia , Óxidos/química , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Imunoterapia/métodos , Camundongos , Nanopartículas/química , Camundongos Endogâmicos BALB C , Feminino , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Materiais Biomiméticos/química , Neoplasias/terapia , Neoplasias/imunologia , Nanovacinas
2.
Front Cell Infect Microbiol ; 14: 1366472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500502

RESUMO

Pulmonary Mucormycosis is a fatal infectious disease with high mortality rate. The occurrence of Mucormycosis is commonly related to the fungal virulence and the host's immunological defenses against pathogens. Mucormycosis infection and granulation tissue formation occurred in the upper airway was rarely reported. This patient was a 60-year-old male with diabetes mellitus, who was admitted to hospital due to progressive cough, sputum and dyspnea. High-resolution computed tomography (HRCT) and bronchoscopy revealed extensive tracheal mucosal necrosis, granulation tissue proliferation, and severe airway stenosis. The mucosal necrotic tissue was induced by the infection of Rhizopus Oryzae, confirmed by metagenomic next-generation sequencing (mNGS) in tissue biopsy. This patient was treated with the placement of a covered stent and local instillation of amphotericin B via bronchoscope. The tracheal mucosal necrosis was markedly alleviated, the symptoms of cough, shortness of breath, as well as exercise tolerance were significantly improved. The placement of airway stent and transbronchial microtube drip of amphotericin B could conduce to rapidly relieve the severe airway obstruction due to Mucormycosis infection.


Assuntos
Obstrução das Vias Respiratórias , Mucormicose , Masculino , Humanos , Pessoa de Meia-Idade , Anfotericina B/uso terapêutico , Mucormicose/diagnóstico , Mucormicose/microbiologia , Mucormicose/patologia , Rhizopus oryzae , Necrose/patologia , Obstrução das Vias Respiratórias/etiologia , Obstrução das Vias Respiratórias/patologia , Tecido de Granulação/patologia , Tosse/patologia
3.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414246

RESUMO

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Assuntos
Cartilagem Articular , Condrócitos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Via de Sinalização Hippo , Osteoartrite , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Thorax ; 79(2): 135-143, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38124156

RESUMO

BACKGROUND: Pulmonary alveolar proteinosis (PAP) is a rare interstitial lung disease characterised by the accumulation of lipoprotein material in the alveoli. Although dyslipidaemia is a prominet feature, the causal effect of lipid traits on PAP remains unclear. This study aimed to explore the role of lipid traits in PAP and evaluate the potential of lipid-lowering drug targets in PAP. METHODS: Clinical outcomes, lipid profiles and lung function tests were analysed in a clinical cohort of diagnosed PAP patients and propensity score-matched healthy controls. Genome-wide association study data on PAP, lipid metabolism, blood cells and variants of genes encoding potential lipid-lowering drug targets were obtained for Mendelian randomisation (MR) and mediation analyses. FINDINGS: Observational results showed that higher levels of total cholesterol (TC), triglycerides and low-density lipoprotein (LDL) were associated with increased risks of PAP. Higher levels of TC and LDL were also associated with worse PAP severity. In MR analysis, elevated LDL was associated with an increased risk of PAP (OR: 4.32, 95% CI: 1.63 to 11.61, p=0.018). Elevated monocytes were associated with a lower risk of PAP (OR 0.34, 95% CI: 0.18 to 0.66, p=0.002) and mediated the risk impact of LDL on PAP. Genetic mimicry of PCSK9 inhibition was associated with a reduced risk of PAP (OR 0.03, p=0.007). INTERPRETATION: Our results support the crucial role of lipid and metabolism-related traits in PAP risk, emphasising the monocyte-mediated, causal effect of elevated LDL in PAP genetics. PCSK9 mediates the development of PAP by raising LDL. These finding provide evidence for lipid-related mechanisms and promising lipid-lowering drug target for PAP.


Assuntos
Pró-Proteína Convertase 9 , Proteinose Alveolar Pulmonar , Humanos , HDL-Colesterol/genética , LDL-Colesterol/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/genética , Pró-Proteína Convertase 9/genética , Proteinose Alveolar Pulmonar/genética , Análise da Randomização Mendeliana
5.
Adv Sci (Weinh) ; 10(33): e2302134, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870165

RESUMO

The protective blood-brain barrier (BBB) prevents most therapeutic agents from entering the brain. Currently, focused ultrasound (FUS) is mostly employed to create microbubbles that induce a cavitation effect to open the BBB. However, microbubbles pass quickly through brain microvessels, substantially limiting the cavitation effect. Here, we constructed a novel perfluoropropane-loaded microbubble, termed ApoER-Pep-MB, which possessed a siloxane bonds-crosslinked surface to increase the microbubble stability against turbulence in blood circulation and was decorated with binding peptide for apolipoprotein E receptor (ApoER-Pep). The microbubble with tailor-made micron size (2 µm) and negative surface charge (-30 mV) performed ApoER-mediated binding rather than internalization into brain capillary endothelial cells. Consequently, the microbubble accumulated on the brain microvessels, based on which even a low-energy ultrasound with less safety risk than FUS, herein diagnostic ultrasound (DUS), could create a strong cavitation effect to open the BBB. Evans Blue and immunofluorescence staining studies demonstrated that the DUS-triggered cavitation effect not only temporarily opened the BBB for 2 h but also caused negligible damage to the brain tissue. Therefore, various agents, ranging from small molecules to nanoscale objects, can be efficiently delivered to target regions of the brain, offering tremendous opportunities for the treatment of brain diseases.


Assuntos
Barreira Hematoencefálica , Microbolhas , Barreira Hematoencefálica/metabolismo , Células Endoteliais , Ultrassonografia , Endotélio
6.
Biomater Sci ; 11(21): 7179-7187, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37740286

RESUMO

The treatment of drug-resistant tumors poses a significant challenge in the field of tumor therapy. Disrupting the homeostasis of reactive oxygen species (ROS) within tumor cells may represent a pivotal strategy for overcoming the prevalent issue of drug resistance. However, the restricted sustainability of ROS generation and the increased autophagy capacity exhibited by tumor cells hinder the application of ROS-based therapies. In this study, we developed liposome nanoparticles (Ato/CQ@L) for co-encapsulation of atorvastatin (Ato), an activator of AMP-activated protein kinase (AMPK), and chloroquine (CQ), an autophagy inhibitor. Upon internalization by tumor cells, Ato upregulated carnitine palmitoyltransferase 1(CPT1) concentration and promoted fatty acid oxidation (FAO) within the tumor cells. The process of FAO coupled with an abundance of fatty acid substrates, facilitates a sustained generation of ROS production. Concurrently, a positive feedback loop is established between escalated concentration of ROS and AMPK protein levels, resulting in a persistent elevation in ROS levels. In addition, CQ disrupted lysosomes, leading to an increased lysosomal pH and reducing autophagy in tumor cells. In both in vivo and in vitro experiments, the Ato/CQ@L treatment group exhibited a considerable enhancement in tumor cell apoptosis, validating the efficacy of this combined therapy. In summary, the combined therapy involving Ato and CQ addresses the inherent limitations of conventional ROS therapy, which include insufficient ROS production and increased autophagy. This approach holds significant potential as a treatment strategy for drug-resistant triple-negative breast cancer.

7.
Signal Transduct Target Ther ; 8(1): 263, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414783

RESUMO

Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.


Assuntos
Neoplasias Gástricas , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas de Membrana
8.
Nano Lett ; 23(11): 5083-5091, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220198

RESUMO

Pyroptosis is a proinflammatory form of programmed cell death that results in the release of cellular contents and activation of immune responses. However, GSDME (a pyroptosis-executed protein) is suppressed in many cancers. Herein, we constructed a nanoliposome (GM@LR) for codelivering the GSDME-expressing plasmid and manganese carbonyl (MnCO) into TNBC cells. MnCO generated Mn2+ and carbon monoxide (CO) in the presence of H2O2. The CO-activated caspase-3, which cleaved the expressed GSDME, converting apoptosis to pyroptosis in 4T1 cells. In addition, Mn2+ promoted maturation of dendritic cells (DCs) by the activation of STING signaling pathway. The increased proportion of intratumoral mature DCs brought about massive infiltration of cytotoxic lymphocytes, leading to a robust immune response. Besides, Mn2+ could be applied for magnetic resonance imaging (MRI)-guided metastasis detection. Taken together, our study showed that GM@LR nanodrug could effectively inhibit tumor growth via pyroptosis and STING activation combined immunotherapy.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Peróxido de Hidrogênio/farmacologia , Nanopartículas/uso terapêutico , Nucleotidiltransferases/farmacologia , Piroptose , Feminino , Animais , Camundongos
9.
Acta Biomater ; 164: 538-552, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037269

RESUMO

Liver metastasis is the leading cause of death in colorectal cancer. Immunotherapy using immune checkpoint blockade (ICB) is ineffective due to its immunological cold tumor nature. Herein, we prepared a nanodrug (NCG) encapsulating the transforming growth factor-ß receptor inhibitor galunisertib (Gal) and the sonosensitizer chlorin e6 (Ce6), which was aimed to turn this type of cold tumor into a hot one to promote the ICB-based immunotherapy against it. After delivery to the tumor, NCG under ultrasonic irradiation generated reactive oxygen species causing tumor immunogenic cell death and releasing immunostimulatory signals such as calreticulin and HMGB1, which increased tumor immunogenicity and activated the innate T lymphocyte immune response. Moreover, NCG responded to the acidic microenvironment and released Gal, inhibiting phosphorylation and inducing immunosuppressive Smad2/3 signaling. Consequently, the differentiation of MDSCs was inhibited, M1-like polarization of tumor-associated macrophages was induced, and the immunosuppressive barrier of tumor-associated fibroblasts was destroyed to increase the infiltration of effector T cells, which reversed the immunosuppression of the tumor microenvironment and improved the therapeutic efficacy of anti-PD-L1 antibodies. Notably, in the liver metastasis mouse model, combination therapy using NCG (+) and aPD-L1 inhibited the growth of colon cancer liver metastasis, manifesting potential in treating this popular yet intractable malignancy. STATEMENT OF SIGNIFICANCE: Only a limited number of patients with colorectal cancer and liver metastasis can benefit from immune checkpoint blockade therapy, as most of them are microsatellite stable, immunologically cold tumors. Interestingly, there is compelling evidence that sonodynamic therapy (SDT) can convert immunosuppressed cold tumors into hot ones, trigger tumor immunogenic cell death non-invasively, and boost cytotoxic T cells infiltration. However, its therapeutic efficacy is constrained by the abundance of transforming growth factor-ß (TGF-ß) cytokines in the tumor microenvironment. Here, we reported a TGF-ß-targeted inhibitory nanodrug that improved SDT in colon cancer and liver metastasis, reversed the immunosuppressive tumor microenvironment and boosted the immune response to anti-PD-L1 therapy in this cancer. It demonstrated the potential to cure this prevalent but incurable malignancy.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Nanopartículas , Animais , Camundongos , Fator de Crescimento Transformador beta , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia , Neoplasias do Colo/patologia , Imunidade , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/uso terapêutico , Nanopartículas/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral
10.
Biomaterials ; 296: 122067, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36854221

RESUMO

Triple negative breast cancer (TNBC) as a highly aggressive and metastatic malignancy lacks targeting therapies nowadays. Moreover, although immune checkpoint blockade (ICB) is known to trigger anti-tumor immune response, most TNBC falls into the immunologically "cold" category unsuitable for ICB therapy due to insufficient lymphocyte infiltration. Herein, we develop a hierarchical targeting strategy for preparing a core-shell-structural nanodrug to concurrently block the programmed death ligand 1 (PD-L1) and deliver a stimulator of interferon gene (STING) agonist into tumor-infiltrating antigen-presenting cells (APCs). The nanodrug complexed the interferon stimulatory DNA (ISD) for STING activation in its core, conjugated PD-L1 antibody (aPD-L1) on its shell through a matrix metalloproteinase-2 (MMP-2) substrate peptide, and incorporated "hidden" mannose in its sublayer. Through aPD-L1-mediated active targeting of tumor cells and tumor-infiltrating APCs, the nanodrug efficiently accumulated in tumor sites. Then, the PD-L1-conjugating peptide was cleaved by tumor-enriched MMP-2, leaving aPD-L1 on target cells for ICB while exposing mannose to mediate targeted delivery of ISD into tumor-infiltrating dendritic cells (DCs) and tumor-associated macrophages (TAMs). Activating the STING signaling in DCs and TAMs not only stimulated the APCs maturation to prime anti-tumor immunity but also induced their chemokine secretion to promote tumor infiltration of anti-tumor effector T cells, thus sensitizing TNBC to the ICB therapy. Consequently, a potent antitumor immunity was evoked to effectively inhibit the tumor growth and metastasis in mice bearing orthotopic 4T1 breast cancer, showing the great potential in treating immunologically "cold" tumors.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Metaloproteinase 2 da Matriz , Antígeno B7-H1 , Manose , Interferons/farmacologia , Interferons/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral
11.
Circ Res ; 131(12): 962-976, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36337049

RESUMO

BACKGROUND: As an integral component of cell membrane repair machinery, MG53 (mitsugumin 53) is important for cardioprotection induced by ischemia preconditioning and postconditioning. However, it also impairs insulin signaling via its E3 ligase activity-mediated ubiquitination-dependent degradation of IR (insulin receptor) and IRS1 (insulin receptor substrate 1) and its myokine function-induced allosteric blockage of IR. Here, we sought to develop MG53 into a cardioprotection therapy by separating its detrimental metabolic effects from beneficial actions. METHODS: Using immunoprecipitation-mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we investigated the role of MG53 phosphorylation at serine 255 (S255). In particular, utilizing recombinant proteins and gene knock-in approaches, we evaluated the potential therapeutic effect of MG53-S255A mutant in treating cardiac ischemia/reperfusion injury in diabetic mice. RESULTS: We identified S255 phosphorylation as a prerequisite for MG53 E3 ligase activity. Furthermore, MG53S255 phosphorylation was mediated by GSK3ß (glycogen synthase kinase 3 beta) and markedly elevated in the animal models with metabolic disorders. Thus, IR-IRS1-GSK3ß-MG53 formed a vicious cycle in the pathogenesis of metabolic disorders where aberrant insulin signaling led to hyper-activation of GSK3ß, which in turn, phosphorylated MG53 and enhanced its E3 ligase activity, and further impaired insulin sensitivity. Importantly, S255A mutant eliminated the E3 ligase activity while retained cell protective function of MG53. Consequently, the S255A mutant, but not the wild type MG53, protected the heart against ischemia/reperfusion injury in db/db mice with advanced diabetes, although both elicited cardioprotection in normal mice. Moreover, in S255A knock-in mice, S255A mutant also mitigated ischemia/reperfusion-induced myocardial damage in the diabetic setting. CONCLUSIONS: S255 phosphorylation is a biased regulation of MG53 E3 ligase activity. The MG53-S255A mutant provides a promising approach for the treatment of acute myocardial injury, especially in patients with metabolic disorders.


Assuntos
Diabetes Mellitus Experimental , Traumatismo por Reperfusão , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Serina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Diabetes Mellitus Experimental/complicações , Proteínas de Membrana/metabolismo , Insulina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Isquemia
12.
Biochem J ; 479(17): 1909-1916, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36053137

RESUMO

MG53 is a tripartite motif (TRIM) family E3 ligase and plays important biological functions. Here we present the cryo-EM structure of human MG53, showing that MG53 is a homodimer consisting of a 'body' and two 'wings'. Intermolecular interactions are mainly distributed in the 'body' which is relatively stable, while two 'wings' are more dynamic. The overall architecture of MG53 is distinct from those of TRIM20 and TRIM25, illustrating the broad structural diversity of this protein family.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas com Motivo Tripartido/química , Proteínas de Transporte/metabolismo , Microscopia Crioeletrônica , Humanos , Proteínas de Membrana/metabolismo , Multimerização Proteica , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
ACS Appl Mater Interfaces ; 14(28): 31625-31633, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796429

RESUMO

Oxaliplatin (OXA) is a first-line chemotherapeutic agent for treating colorectal cancer (CC). However, the chemotherapeutic effect of OXA on CC is limited by the M2-like polarization of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and protective autophagy of tumor cells. Here, a cationic polymer APEG-PAsp(PEI) (PAPEI) was prepared to deliver small-interfering RNA (siRNA) to silence the lactate dehydrogenase A (LDHA) gene (LDHA-siRNA) to enhance the chemotherapeutic effect of OXA on CC. The PAPEI/LDHA-siRNA nanocomplex effectively silenced the LDHA gene to inhibit the secretion of lactic acid from tumor cells, resulting in inhibition of the M2-like polarization of TAMs. In addition, the nanocomplex also amplified OXA-induced autophagy and transformed protective autophagy into autophagic death. Consequently, the combination treatment of OXA and PAPEI/LDHA-siRNA showed a dramatically increased chemotherapeutic effect on CC compared with the OXA-alone treatment, which also suggested its attractive potential for treating CC-like immune "cold" tumors.


Assuntos
Neoplasias Colorretais , Nanopartículas , Autofagia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Humanos , Lactato Desidrogenase 5 , Nanopartículas/uso terapêutico , Oxaliplatina/farmacologia , RNA Interferente Pequeno/farmacologia , Microambiente Tumoral , Macrófagos Associados a Tumor
14.
Nano Lett ; 22(7): 3095-3103, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357839

RESUMO

Recent breakthroughs in cell membrane-fabricated nanovaccine offer innovateive therapeutic options for preventing tumor metastasies and recurrence, yet the treatment of patient-specific solid tumor remained challenging owing to the immunosuppressive tumor microenvironment. Herein, we developed a personalized photothermal nanovaccine based on the surgical tumor-derived cell membranes (CMs) coating resiquimod (R848) loaded mesoporous polydopamine (MPDA) nanoparticles for targeting tumor photothermal immunotherapy and prevention. The fabricated photothermal nanovaccine MPDA-R848@CM (MR@C) demonstrates outstanding imaging-guided photothermal immunotherapy efficacy to eradicate solid tumors under near-IR laser irradiation and further inhibiting metastasis tumors by the resulted antitumor immunities, especially in combination with programmed death-ligand 1 antibody therapy (aPD-L1). Furthermore, from in vivo prophylactic testing results, it is confirmed that the 4T1 cells rechallenge can be prevented 100% in postsurgical tumor model after vaccination of the photothermal nanovaccine. Our work fabricates a personalized photothermal nanovaccine that possesses great potential for tumor-specific treatment and for preventing postoperative tumor recurrence.


Assuntos
Nanopartículas , Neoplasias , Humanos , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/prevenção & controle , Fototerapia/métodos , Microambiente Tumoral
15.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35317609

RESUMO

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão Miocárdica , Neoplasias , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Indóis , Isquemia/metabolismo , Camundongos , Camundongos Nus , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Neoplasias/patologia , Ratos , Sulfonamidas
16.
Diabetes ; 71(2): 298-314, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844991

RESUMO

Cardiometabolic diseases, including diabetes and its cardiovascular complications, are the global leading causes of death, highlighting a major unmet medical need. Over the past decade, mitsugumin 53 (MG53), also called TRIM72, has emerged as a powerful agent for myocardial membrane repair and cardioprotection, but its therapeutic value is complicated by its E3 ligase activity, which mediates metabolic disorders. Here, we show that an E3 ligase-dead mutant, MG53-C14A, retains its cardioprotective function without causing metabolic adverse effects. When administered in normal animals, both the recombinant human wild-type MG53 protein (rhMG53-WT) and its E3 ligase-dead mutant (rhMG53-C14A) protected the heart equally from myocardial infarction and ischemia/reperfusion (I/R) injury. However, in diabetic db/db mice, rhMG53-WT treatment markedly aggravated hyperglycemia, cardiac I/R injury, and mortality, whereas acute and chronic treatment with rhMG53-C14A still effectively ameliorated I/R-induced myocardial injury and mortality or diabetic cardiomyopathy, respectively, without metabolic adverse effects. Furthermore, knock-in of MG53-C14A protected the mice from high-fat diet-induced metabolic disorders and cardiac damage. Thus, the E3 ligase-dead mutant MG53-C14A not only protects the heart from acute myocardial injury but also counteracts metabolic stress, providing a potentially important therapy for the treatment of acute myocardial injury in metabolic disorders, including diabetes and obesity.


Assuntos
Proteínas de Membrana/genética , Síndrome Metabólica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Células Cultivadas , Citoproteção/genética , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Feminino , Coração/fisiopatologia , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de Sinais/genética
17.
J Biomed Nanotechnol ; 17(4): 582-594, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057885

RESUMO

Iron oxide nanomaterials with mimic enzymes activity have been paid more attention in the clinical diagnosis field. The modified surface molecules would influence the catalytic activity of nanozyme, which is worth studying. Furthermore, the traditional detection strategy is based on colorimetric change of substrates, however, the optical signal is easy to be interfered in complex biological applications. In our research, an efficient and facile preparation strategy was developed to obtain functional artificial nanozymes. Herein, three kinds of surfactants, including citrate acid, poly(ethylene glycol) bis (carboxymethyl) ether and tannic acid have been applied to modify these nanomaterials that showed uniform size, high soluble dispersity and stability. Furthermore, these nanozymes exhibited different peroxidase-like activity to catalyze the hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine. More importantly, magnetic relaxation effect of iron oxide nanozymes was found to be changed during the catalytic reaction. In addition, the relationship between the magnetic signal of nanozymes and the substrate concentration showed a good linear dependence. Combined with the natural enzymes, the magnetic detection of iron oxide nanozymes also exhibited excellent substrate specificity. On these bases, a dual-function specific assay was constructed and further used for glucose detection. In conclusion, this study demonstrated an efficient iron oxide nanozymes preparation method and constructed a new synergistically colorimetric-magnetic diagnosis strategy.


Assuntos
Colorimetria , Compostos Férricos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
19.
Circulation ; 139(7): 901-914, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586741

RESUMO

BACKGROUND: Mitsugumin 53 (MG53 or TRIM72), a striated muscle-specific E3 ligase, promotes ubiquitin-dependent degradation of the insulin receptor and insulin receptor substrate-1 and subsequently induces insulin resistance, resulting in metabolic syndrome and type 2 diabetes mellitus (T2DM). However, it is unknown how MG53 from muscle regulates systemic insulin response and energy metabolism. Increasing evidence demonstrates that muscle secretes proteins as myokines or cardiokines that regulate systemic metabolic processes. We hypothesize that MG53 may act as a myokine/cardiokine, contributing to interorgan regulation of insulin sensitivity and metabolic homeostasis. METHODS: Using perfused rodent hearts or skeletal muscle, we investigated whether high glucose, high insulin, or their combination (conditions mimicking metabolic syndrome or T2DM) alters MG53 protein concentration in the perfusate. We also measured serum MG53 levels in rodents and humans in the presence or absence of metabolic diseases, particularly T2DM. The effects of circulating MG53 on multiorgan insulin response were evaluated by systemic delivery of recombinant MG53 protein to mice. Furthermore, the potential involvement of circulating MG53 in the pathogenesis of T2DM was assessed by neutralizing blood MG53 with monoclonal antibodies in diabetic db/db mice. Finally, to delineate the mechanism underlying the action of extracellular MG53 on insulin signaling, we analyzed the potential interaction of MG53 with extracellular domain of insulin receptor using coimmunoprecipitation and surface plasmon resonance assays. RESULTS: Here, we demonstrate that MG53 is a glucose-sensitive myokine/cardiokine that governs the interorgan regulation of insulin sensitivity. First, high glucose or high insulin induces MG53 secretion from isolated rodent hearts and skeletal muscle. Second, hyperglycemia is accompanied by increased circulating MG53 in humans and rodents with diabetes mellitus. Third, systemic delivery of recombinant MG53 or cardiac-specific overexpression of MG53 causes systemic insulin resistance and metabolic syndrome in mice, whereas neutralizing circulating MG53 with monoclonal antibodies has therapeutic effects in T2DM db/db mice. Mechanistically, MG53 binds to the extracellular domain of the insulin receptor and acts as an allosteric blocker. CONCLUSIONS: Thus, MG53 has dual actions as a myokine/cardiokine and an E3 ligase, synergistically inhibiting the insulin signaling pathway. Targeting circulating MG53 opens a new therapeutic avenue for T2DM and its complications.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/sangue , Metabolismo Energético , Resistência à Insulina , Proteínas de Membrana/metabolismo , Adulto , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/metabolismo , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Estudos de Casos e Controles , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Diabetes Mellitus/imunologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Células HEK293 , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Ratos Sprague-Dawley , Ratos Zucker , Receptor de Insulina/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido/metabolismo , Proteínas de Transporte Vesicular/metabolismo
20.
Org Lett ; 20(22): 7326-7331, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30403359

RESUMO

An expedient [5 + 1] annulation method via Rh(III)-catalyzed C-H bond functionalization of enaminones to synthesize polyaromatic rings is described. The reaction tolerates a broad range of functional groups and offers a new entry to construct polycyclic aromatic compounds with amino and formyl substituents. A possible reaction mechanism was proposed based on the results obtained from isotope labeling experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...