Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 154: 102898, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38843691

RESUMO

We present a neural network framework for learning a survival model to predict a time-to-event outcome while simultaneously learning a topic model that reveals feature relationships. In particular, we model each subject as a distribution over "topics", where a topic could, for instance, correspond to an age group, a disorder, or a disease. The presence of a topic in a subject means that specific clinical features are more likely to appear for the subject. Topics encode information about related features and are learned in a supervised manner to predict a time-to-event outcome. Our framework supports combining many different topic and survival models; training the resulting joint survival-topic model readily scales to large datasets using standard neural net optimizers with minibatch gradient descent. For example, a special case is to combine LDA with a Cox model, in which case a subject's distribution over topics serves as the input feature vector to the Cox model. We explain how to address practical implementation issues that arise when applying these neural survival-supervised topic models to clinical data, including how to visualize results to assist clinical interpretation. We study the effectiveness of our proposed framework on seven clinical datasets on predicting time until death as well as hospital ICU length of stay, where we find that neural survival-supervised topic models achieve competitive accuracy with existing approaches while yielding interpretable clinical topics that explain feature relationships. Our code is available at: https://github.com/georgehc/survival-topics.

2.
Proc Mach Learn Res ; 225: 403-427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550276

RESUMO

We consider the problem of predicting how the likelihood of an outcome of interest for a patient changes over time as we observe more of the patient's data. To solve this problem, we propose a supervised contrastive learning framework that learns an embedding representation for each time step of a patient time series. Our framework learns the embedding space to have the following properties: (1) nearby points in the embedding space have similar predicted class probabilities, (2) adjacent time steps of the same time series map to nearby points in the embedding space, and (3) time steps with very different raw feature vectors map to far apart regions of the embedding space. To achieve property (3), we employ a nearest neighbor pairing mechanism in the raw feature space. This mechanism also serves as an alternative to "data augmentation", a key ingredient of contrastive learning, which lacks a standard procedure that is adequately realistic for clinical tabular data, to our knowledge. We demonstrate that our approach outperforms state-of-the-art baselines in predicting mortality of septic patients (MIMIC-III dataset) and tracking progression of cognitive impairment (ADNI dataset). Our method also consistently recovers the correct synthetic dataset embedding structure across experiments, a feat not achieved by baselines. Our ablation experiments show the pivotal role of our nearest neighbor pairing.

3.
Med Image Comput Comput Assist Interv ; 9351: 140-148, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26889499

RESUMO

Despite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.

4.
Big Data ; 3(1): 41-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27442844

RESUMO

Satellite imagery is a form of big data that can be harnessed for many social good applications, especially those focusing on rural areas. In this article, we describe the common problem of selecting sites for and planning rural development activities as informed by remote sensing and satellite image analysis. Effective planning in poor rural areas benefits from information that is not available and is difficult to obtain at any appreciable scale by any means other than algorithms for estimation and inference from remotely sensed images. We discuss two cases in depth: the targeting of unconditional cash transfers to extremely poor villages in sub-Saharan Africa and the siting and planning of solar-powered microgrids in remote villages in India. From these cases, we draw out some common lessons broadly applicable to informed rural development.

5.
Inf Process Med Imaging ; 23: 292-303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24683977

RESUMO

Manifold learning has been successfully applied to a variety of medical imaging problems. Its use in real-time applications requires fast projection onto the low-dimensional space. To this end, out-of-sample extensions are applied by constructing an interpolation function that maps from the input space to the low-dimensional manifold. Commonly used approaches such as the Nyström extension and kernel ridge regression require using all training points. We propose an interpolation function that only depends on a small subset of the input training data. Consequently, in the testing phase each new point only needs to be compared against a small number of input training data in order to project the point onto the low-dimensional space. We interpret our method as an out-of-sample extension that approximates kernel ridge regression. Our method involves solving a simple convex optimization problem and has the attractive property of guaranteeing an upper bound on the approximation error, which is crucial for medical applications. Tuning this error bound controls the sparsity of the resulting interpolation function. We illustrate our method in two clinical applications that require fast mapping of input images onto a low-dimensional space.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Ultrassonografia/métodos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-26052560

RESUMO

For a given cognitive task such as language processing, the location of corresponding functional regions in the brain may vary across subjects relative to anatomy. We present a probabilistic generative model that accounts for such variability as observed in fMRI data. We relate our approach to sparse coding that estimates a basis consisting of functional regions in the brain. Individual fMRI data is represented as a weighted sum of these functional regions that undergo deformations. We demonstrate the proposed method on a language fMRI study. Our method identified activation regions that agree with known literature on language processing and established correspondences among activation regions across subjects, producing more robust group-level effects than anatomical alignment alone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...