Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 19(4)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38772383

RESUMO

The traditional chemotherapeutic agents' disadvantages such as high toxicity, untargeting and poor water solubility lead to disappointing chemotherapy effects, which restricts its clinical application. In this work, novel size-appropriate and glutathione (GSH)-responsive nano-hydrogels were successfully prepared via the active ester method between chitosan (containing -NH2) and cross-linker (containing NHS). Especially, the cross-linker was elaborately designed to possess a disulfide linkage (SS) as well as two terminal NHS groups, namely NHS-SS-NHS. These functionalities endowed chitosan-based cross-linked scaffolds with capabilities for drug loading and delivery, as well as a GSH-responsive mechanism for drug release. The prepared nano-hydrogels demonstrated excellent performance applicable morphology, excellent drug loading efficiency (∼22.5%), suitable size (∼100 nm) and long-term stability. The prepared nano-hydrogels released over 80% doxorubicin (DOX) after incubation in 10 mM GSH while a minimal DOX release less than 25% was tested in normal physiological buffer (pH = 7.4). The unloaded nano-hydrogels did not show any apparent cytotoxicity to A 549 cells. In contrast, DOX-loaded nano-hydrogels exhibited marked anti-tumor activity against A 549 cells, especially in high GSH environment. Finally, through fluorescent imaging and flow cytometry analysis, fluorescein isothiocyanate-labeled nano-hydrogels show obvious specific binding to the GSH high-expressing A549 cells and nonspecific binding to the GSH low-expressing A549 cells. Therefore, with this cross-linking approach, our present finding suggests that cross-linked chitosan nano-hydrogel drug carrier improves the anti-tumor effect of the A 549 cells and may serve as a potential injectable delivery carrier.


Assuntos
Antineoplásicos , Quitosana , Reagentes de Ligações Cruzadas , Doxorrubicina , Glutationa , Hidrogéis , Quitosana/química , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Glutationa/química , Glutationa/metabolismo , Hidrogéis/química , Reagentes de Ligações Cruzadas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Células A549 , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Dissulfetos/química , Preparações de Ação Retardada/química
2.
Adv Sci (Weinh) ; 11(25): e2309657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38654462

RESUMO

Alleviating the decomposition of the electrolyte is of great significance to improving the cycle stability of cathodes, especially for LiCoO2 (LCO), its volumetric energy density can be effectively promoted by increasing the charge cutoff voltage to 4.6 V, thereby supporting the large-scale application of clean energy. However, the rapid decomposition of the electrolyte under 4.6 V conditions not only loses the transport carrier for lithium ion, but also produces HF and insulators that destroy the interface of LCO and increase impedance. In this work, the decomposition of electrolyte is effectively suppressed by changing the adsorption force between LCO interface and EC. Density functional theory illustrates the LCO coated with lower electronegativity elements has a weaker adsorption force with the electrolyte, the adsorption energy between LCO@Mg and EC (0.49 eV) is weaker than that of LCO@Ti (0.73 eV). Meanwhile, based on the results of time of flight secondary ion mass spectrometry, conductivity-atomic force microscopy, in situ differential electrochemical mass spectrometry, soft X-ray absorption spectroscopy, and nuclear magnetic resonance, as the adsorption force increases, the electrolyte decomposes more seriously. This work provides a new perspective on the interaction between electrolyte and the interface of cathode and further improves the understanding of electrolyte decomposition.

3.
RSC Adv ; 14(17): 11862-11871, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623293

RESUMO

Since Na3V2(PO4)3 (NVP) possesses modest volume deformation and three-dimensional ion diffusion channels, it is a potential sodium-ion battery cathode material that has been extensively researched. Nonetheless, NVP still endures the consequences of poor electronic conductivity and low voltage platforms, which need to be further improved. On this basis, a high voltage platform Na3V2(PO4)2F3 was introduced to form a composite with NVP to increase the energy density. In this study, the sol-gel technique was successfully used to synthesize a Na3V2(PO4)2.75F0.75/C (NVPF·3NVP/C) composite cathode material. The citric acid-derived carbon layer was utilized to construct three-dimensional conducting networks to effectively promote ion and electron diffusion. Furthermore, the composites' synergistic effect accelerates the quick ionic migration and improves the kinetic reaction. In particular, NVP as the dominant phase enhanced the structural stability and significantly increased the capacitive contribution. Therefore, at 0.1C, the discharge capacity of the modified NVPF·3NVP/C composite is 120.7 mA h g-1, which is greater than the theoretical discharge capacity of pure NVP (118 mA h g-1). It discharged 110.9 mA h g-1 of reversible capacity even at an elevated multiplicity of 10C, and after 200 cycles, it retained 64.1% of its capacity. Thus, the effort produced an optimized NVPF·3NVP/C composite cathode material that may be used in the sodium ion cathode.

4.
ACS Appl Mater Interfaces ; 16(5): 6143-6151, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270105

RESUMO

V5S8 has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of V5S8 still suffers from volume expansion and low conductivity. Herein, a hollow nanotube V5S8@C (H-V5S8@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion. Benefiting from the large specific surface area of the hollow nanotube structure and uniform carbon coating, H-V5S8@C exhibits a more active site and enhanced conductivity. Meanwhile, the heterojunction formed by a few residual MoS2 and the outer layer of V5S8 stabilizes the structure and reduces the ion migration barrier with fast Na+ transport. Specifically, the H-V5S8@C anode provides an enhanced rate performance of 270.1 mAh g-1 at 15 A g-1 and high cycling stability of 291.7 mAh g-1 with a retention rate of 90.98% after 300 cycles at 5 A g-1. This work provides a feasible approach for the structural design of 2D layered materials, which can promote the practical application of fast-charging sodium-ion batteries.

5.
ACS Appl Mater Interfaces ; 15(18): 21982-21993, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098946

RESUMO

Due to high volumetric energy density, the major market share of cathode materials for lithium-ion batteries is still dominated by LiCoO2 (LCO) at a 3C field. However, a number of challenges will be triggered if the charge voltage is increased from 4.2/4.3 to 4.6 V to further increase energy density, such as a violent interface reaction, Co dissolution, and release of lattice oxygen. Here, LCO is coated with the fast ionic conductor Li1.8Sc0.8Ti1.2(PO4)3 (LSTP) to form LCO@LSTP, while a stable interface of LCO is in situ constructed by the decomposition of LSTP at the LSTP/LCO interface. As decomposition products of LSTP, Ti and Sc elements can be doped into LCO and thus reconstruct the interface from a layered structure to a spinel structure, which improves the stability of the interface. Moreover, Li3PO4 from the decomposition of LSTP and remaining LSTP coating as a fast ionic conductor can improve Li+ transport when compared with bare LCO, and thus boost the specific capacity to 185.3 mAh g-1 at 1C. Benefited from the stable interface and fast ion conducting coating, the LCO@LSTP (1 wt %) cathode delivers a high capacity of 202.3 mAh g-1 at the first cycle (0.5C, 3.0-4.6 V), and shows a higher capacity retention of 89.0% than LCO (50.9%) after 100 cycles. Furthermore, the change of the Fermi level obtained by using a kelvin probe force microscope (KPFM) and the oxygen band structure calculated by using density functional theory further illustrate that LSTP supports the performance of LCO. We anticipate that this study can improve the conversion efficiency of energy-storage devices.

6.
Small Methods ; 7(2): e2201387, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36604985

RESUMO

Sodium-ion batteries (SIBs) have inspired the potential for widespread use in energy storage owing to the advantages of abundant resources and low cost. Benefiting from the layered structure, 2D-layered materials enable fast interlayer transport of sodium ions and thus are considered promising candidates as anodes for SIBs. Herein, a strategy of adjusting crystal orientation is proposed via a solvothermal method to improve sodium-ion transport at the edge of the interlayers in 2D-layered materials. By introducing surfactants and templates, the 2D-layered V5 S8 nanosheets are controlled to align the interlayer diffusion channels vertically to the surface, which promotes the fast transport of Na+ at the edge of the interlayers as revealed by experimental methods and ab initio calculations. Benefiting from the aligned crystal orientation and rGO coating, the vertical-V5 S8 @rGO hybrid delivers a high initial discharge capacity of 350.6 mAh g-1 at a high current density of 15 A g-1 . This work provides a strategy for the structural design of 2D-layered anode materials by adjusting crystal orientation, which demonstrates the promise for applications in fast-charging alkaline-ion batteries.

7.
ACS Appl Mater Interfaces ; 13(48): 58011-58018, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797985

RESUMO

Micro-nanofabrication of conductive polymers (CPs) with functional structures is in great demand in organic electronic devices, micro-optics, and flex sensors. Here, we report the fabrication of micropatterned poly(3,4-ethylenedioxythiophene) (PEDOT) and its applications on flexible electrochromic devices and tunable diffractive optics. The localized electropolymerization of 3,4-ethylenedioxythiophene at the electrode/agarose gel stamping interface through an electrochemical wet stamping (E-WETS) technique is used to fabricate PEDOT with functional microstructures. PEDOT microdots, micro-rectangles, and interdigitated array microelectrodes are fabricated with submicron tolerance and ∼2 µm smallest feature size. Furthermore, the flexible PEDOT electrochromic devices consisting of the logo of Xiamen University are fabricated with a reversible switch of absorptivity. The improved optical and coloration-amperometric responses of electrochromism are demonstrated because of the enhanced charge transport rate of the micropatterned PEDOT. The electrochromism of the 2D PEDOT micropatterns is further used as a binary diffractive optical element to modulate the intensity and efficiency of diffracted 2D structural light because of the switchable absorptivity during doping and dedoping processes. When the potential is switched from 1 to -1 V to tune the absorptivity at ∼600 nm from low to high, the intensity of zero-order diffraction light spot decreases with the intensity of other order diffraction light spots increasing dramatically. The results demonstrate that E-WETS provides an alternative method for the fabrication of CPs with functional micro-nanostructures. The electrochemical tunable diffraction with high reversibility and fast response is of potential applications in micro-optics and flex sensors.

8.
Front Chem ; 6: 174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876346

RESUMO

Reduced graphene oxide (rGO) sheet decorated Na3V2(PO4)3 (NVP) microspheres were successfully synthesized by spray-drying method. The NVP microspheres were embedded by rGO sheets, and the surface of the particles were coated by rGO sheets and amorphous carbon. Thus, the carbon conductive network consisted of rGO sheets and amorphous carbon generated in the cathode material. NVP microspheres decorated with different content of rGO (about 0, 4, 8, and 12 wt%) were investigated in this study. The electrochemical performance of NVP exhibited a significant enhancement after rGO introduction. The electrode containing about 8 wt% rGO (NVP/G8) showed the best rate and cycle performance. NVP/G8 electrode exhibited the discharge capacity of 64.0 mAh g-1 at 70°C, and achieved high capacity retention of 95.5% after cycling at 10°C for 100 cycles. The polarization of the electrode was inhibited by the introduction of rGO sheets. Meanwhile, compared with the pristine NVP electrode, NVP/G8 electrode exhibited small resistance and high diffusion coefficient of sodium ions.

9.
ACS Appl Mater Interfaces ; 10(4): 3590-3595, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29356505

RESUMO

A novel cathode material, carbon nanotube (CNT)-decorated Na3V2(PO4)3 (NVP) microspheres, was designed and synthesized via spray-drying and carbothermal reduction methods. The microspheres were covered and embedded by CNTs, the surfaces of which were also covered by amorphous carbon layers. Thus, a carbon network composed of CNTs and amorphous carbon layers formed in the materials. The polarization of a 10 wt % CNT-decorated NVP (NVP/C10) electrode was much less compared with that of the electrode with pristine NVP without CNTs. The capacity of the NVP/C10 electrode only decreased from 103.2 to 76.2 mAh g-1 when the current rates increased from 0.2 to 60 C. Even when cycled at a rate of 20 C, the initial discharge capacity of the NVP/C10 electrode was as high as 91.2 mAh g-1, and the discharge capacity was 76.9 mAh g-1 after 150 cycles. The charge-transfer resistance and ohmic resistance became smaller because of CNT decorating. Meanwhile, the addition of CNTs can tune the size of the NVP particles and increase the contact area between NVP and the electrolyte. Consequently, the resulted NVP had a larger sodium ion diffusion coefficient than that of the pristine NVP.

10.
Front Chem ; 6: 629, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619835

RESUMO

SnS2 nanosheets/reduced graphene oxide (rGO) composite was prepared by reflux condensation and hydrothermal methods. In this composite, SnS2 nanosheets in-situ grew on the surface of rGO nanosheets. The SnS2/rGO composite as anode material was investigated both in lithium ion battery (LIB) and sodium ion battery (SIB) systems. The capacity of SnS2/rGO electrode in LIB achieved 514 mAh g-1 at 1.2 A g-1 after 300 cycles. Moreover, the SnS2/rGO electrode in SIB delivered a discharge capacity of 645 mAh g-1 at 0.05 A g-1; after 100 cycles at 0.25 A g-1, the capacity retention still keep 81.2% relative to the capacity of the 6th cycle. Due to the introduction of rGO in the composite, the charge-transfer resistance became much smaller. Compared with SnS2/C electrode, SnS2/rGO electrode had higher discharge capacity and much better cycling performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...