Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 204, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340378

RESUMO

BACKGROUND: Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent. METHODS: Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan. RESULTS: We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm-1 (C = O stretching vibration), 1370 cm-1 (deformation of the H-C-OH bonds), and 1370 cm-1 (C-O-C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment. CONCLUSION: Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Pós/farmacologia , Polissacarídeos/farmacologia , Proliferação de Células
2.
Stem Cells Int ; 2019: 9280298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236116

RESUMO

Human menstrual blood-derived stem cells (hMBSCs) are a novel type of mesenchymal stem cells (MSCs) that have a high proliferative rate, multilineage differentiation potential, low immunogenicity, and low oncogenicity, making them suitable candidates for regenerative medicine. The therapeutic efficacy of hMBSCs has been demonstrated in some diseases; however, their effects on cervical cancer remain unclear. In the present study, we investigated whether hMBSCs have anticancer properties on cervical cancer cells in vivo and in vitro, which has not yet been reported. In vitro, transwell coculturing experiments revealed that hMBSCs suppress the proliferation and invasion of HeLa cervical cancer cells by inducing G0/G1 cell cycle arrest. In vivo, we established a xenografted BALB/c nude mouse model by subcutaneously coinjecting HeLa cells with hMBSCs for 21 days. We found that hMBSCs significantly decrease the average volume and average weight of xenografted tumors. ELISA, TGF-ß1 antibody, and recombinant human TGF-ß1 (rhTGF-ß1) were used to analyze whether TGF-ß1 contributed to cell cycle arrest. We found that hMBSC-secreted TGF-ß1 and rhTGF-ß1 induced cell cycle arrest and increased the expression of phospho-JNK and phospho-P21 in HeLa cells, which was mostly reversed by TGF-ß1 antibody. These results indicate that hMBSCs have antitumor properties on cervical cancer in vitro and in vivo, mediated by the TGF-ß1/JNK/p21 signaling pathway. In conclusion, this study suggests that hMBSC-based therapy is promising for the treatment of cervical cancer.

3.
Molecules ; 23(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29987222

RESUMO

Allergic diseases, which include asthma, allergic rhinitis (AR), chronic rhinosinusitis (CRS), atopic dermatitis (AD), food allergy (FA), allergic keratoconjunctivitis, seriously affect the quality of life of people all over the world. Recently, interleukin-33 (IL-33) has been found to play an important role in these refractory disorders, mainly by inducing T helper (Th) 2 immune responses. This article reviews the mobilization and biological function of IL-33 in allergic disorders, providing novel insights for addressing these hypersensitive conditions.


Assuntos
Hipersensibilidade/imunologia , Interleucina-33/metabolismo , Regulação para Cima , Humanos , Hipersensibilidade/psicologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Qualidade de Vida , Transdução de Sinais , Células Th2/imunologia
4.
Onco Targets Ther ; 10: 3435-3451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744148

RESUMO

Epithelial-mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients' prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3' untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...