Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 24(2): 345-353, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35303207

RESUMO

In fish, the maturity of gonads plays an important role in the development and reproduction of the population, and it also dictates the success of captive breeding. Therefore, finding ways to promote gonadal maturation is an important goal in aquaculture. In this study, we injected recombinant dmrt1 and rec8 overexpression plasmids packaged in liposomes into the immature testis of red-spotted grouper (Epinephelus akaara) and measured the expression of Dmrt1 and Rec8 protein in vivo. Gonadosomatic index (GSI) and gonadal histology analyses showed that the testis developed from the immature to the mature state within 7 days after plasmid injection. Additionally, the spermatozoa concentration and motility in plasmid-injected fish was the same as that of naturally mature fish. These results provided evidence that delivery of dmrt1 and rec8 expression plasmids into the testis via injection induced testis maturation in vivo.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , Lipossomos , Masculino , Plasmídeos/genética , Diferenciação Sexual , Testículo
2.
Materials (Basel) ; 11(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702610

RESUMO

A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism, previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However, according to recent studies, the hydrogen leads to the decline of the mechanical properties of steel, which is known as hydrogen embrittlement, is another reason for flake formation. In addition, the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel, the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure, hydrogen embrittlement, and stress induced hydrogen re-distribution. The analysis model was established using the finite element method, and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap, a stress field formed. In addition, the trap is the center of stress concentration. Then, hydrogen is concentrated in a distribution around this trap, and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However, when the trap size exceeds the specified value, the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm, the critical hydrogen content of Cr5VMo steel is 2.2 ppm, which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...