Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Syst ; 15(4): 374-387.e6, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38537640

RESUMO

How a protein's function influences the shape of its fitness landscape, smooth or rugged, is a fundamental question in evolutionary biochemistry. Smooth landscapes arise when incremental mutational steps lead to a progressive change in function, as commonly seen in enzymes and binding proteins. On the other hand, rugged landscapes are poorly understood because of the inherent unpredictability of how sequence changes affect function. Here, we experimentally characterize the entire sequence phylogeny, comprising 1,158 extant and ancestral sequences, of the DNA-binding domain (DBD) of the LacI/GalR transcriptional repressor family. Our analysis revealed an extremely rugged landscape with rapid switching of specificity, even between adjacent nodes. Further, the ruggedness arises due to the necessity of the repressor to simultaneously evolve specificity for asymmetric operators and disfavors potentially adverse regulatory crosstalk. Our study provides fundamental insight into evolutionary, molecular, and biophysical rules of genetic regulation through the lens of fitness landscapes.


Assuntos
Filogenia
3.
bioRxiv ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38496486

RESUMO

Allosteric transcription factors (aTF), widely used as biosensors, have proven challenging to design for detecting novel molecules because mutation of ligand-binding residues often disrupts allostery. We developed Sensor-seq, a high-throughput platform to design and identify aTF biosensors that bind to non-native ligands. We screened a library of 17,737 variants of the aTF TtgR, a regulator of a multidrug exporter, against six non-native ligands of diverse chemical structures - four derivatives of the cancer therapeutic tamoxifen, the antimalarial drug quinine, and the opiate analog naltrexone - as well as two native flavonoid ligands, naringenin and phloretin. Sensor-seq identified novel biosensors for each of these ligands with high dynamic range and diverse specificity profiles. The structure of a naltrexone-bound design showed shape-complementary methionine-aromatic interactions driving ligand specificity. To demonstrate practical utility, we developed cell-free detection systems for naltrexone and quinine. Sensor-seq enables rapid, scalable design of new biosensors, overcoming constraints of natural biosensors.

4.
Trends Biochem Sci ; 48(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36180320

RESUMO

Bacteriophage research has been vital to fundamental aspects of modern biology. Advances in metagenomics have revealed treasure troves of new and uncharacterized bacteriophages ('phages') that are not yet understood. However, our ability to find new phages has outpaced our understanding of how sequence encodes function in phages. Traditional approaches for characterizing phages are limited in scale and face hurdles in determining how changes in sequence drive function. We describe powerful emerging technologies that can be used to clarify sequence-function relationships in phages through high-throughput genome engineering. Using these approaches, up to 105 variants can be characterized through pooled selection experiments and deep sequencing. We describe caveats when using these tools and provide examples of basic science and engineering goals that are pursuable using these approaches.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Genoma Viral
5.
Toxicol Lett ; 329: 38-46, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320774

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic alterations and mRNA splicing. Young adult female mice exposed to different concentrations of PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. There was no significant change in the other Dnmts and Tets. PFOA exposure significantly increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected by PFOA exposure were identified. The changes in protein abundance of the splicing factors was also reflected in altered splicing pattern of their target genes, which provided new insights on the previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Caprilatos/farmacologia , Metilação de DNA/efeitos dos fármacos , Fluorocarbonos/farmacologia , Fígado/efeitos dos fármacos , Animais , Apoptose , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas , DNA Metiltransferase 3A , Fígado Gorduroso/induzido quimicamente , Feminino , Camundongos , Isoformas de Proteínas , Proteínas de Ligação a RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Nat Struct Mol Biol ; 25(10): 928-939, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250226

RESUMO

During liver regeneration, most new hepatocytes arise via self-duplication; yet, the underlying mechanisms that drive hepatocyte proliferation following injury remain poorly defined. By combining high-resolution transcriptome and polysome profiling of hepatocytes purified from quiescent and toxin-injured mouse livers, we uncover pervasive alterations in messenger RNA translation of metabolic and RNA-processing factors, which modulate the protein levels of a set of splicing regulators. Specifically, downregulation of the splicing regulator ESRP2 activates a neonatal alternative splicing program that rewires the Hippo signaling pathway in regenerating hepatocytes. We show that production of neonatal splice isoforms attenuates Hippo signaling, enables greater transcriptional activation of downstream target genes, and facilitates liver regeneration. We further demonstrate that ESRP2 deletion in mice causes excessive hepatocyte proliferation upon injury, whereas forced expression of ESRP2 inhibits proliferation by suppressing the expression of neonatal Hippo pathway isoforms. Thus, our findings reveal an alternative splicing axis that supports regeneration following chronic liver injury.


Assuntos
Processamento Alternativo , Regeneração Hepática/genética , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Via de Sinalização Hippo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Transdução de Sinais/genética
7.
J Ophthalmic Vis Res ; 5(2): 75-81, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22737334

RESUMO

PURPOSE: To investigate whether seasonal modification in the concentration of atropine drops is effective in retarding the progression of myopia. METHODS: Two hundred and forty eyes of 120 healthy preschool- and school-age children in Chiayi region, Taiwan were recruited. The treatment group consisted of 126 eyes of 63 children who received atropine eye drops daily for one year and the control group included 114 eyes of 57 children who received nothing. The concentration of atropine eye drops was modified by seasonal variation as follows: 0.1% for summer, 0.25% for spring and fall, and 0.5% for winter. Refractive error, visual acuity, intraocular pressure (IOP), and axial length were evaluated before and after intervention. RESULTS: Mean age was 9.1±2.8 years in the atropine group versus 9.3±2.8 years in controls (P=0.88). Mean spherical equivalent, refractive error and astigmatism were -1.90±1.66 diopters (D) and -0.50±0.59 D in the atropine group; corresponding values in the control group were -2.09±1.67 D (P=0.97) and -0.55±0.60 D (P=0.85), respectively. After one year, mean progression of myopia was 0.28±0.75 D in the atropine group vs 1.23±0.44 D in controls (P<0.001). Myopic progression was significantly correlated with an increase in axial length in both atropine (r=0.297, P=0.001) and control (r=0.348, P<0.001) groups. No correlation was observed between myopic progression and IOP in either study group. CONCLUSION: Modifying the concentration of atropine drops based on seasonal variation, seems to be effective and tolerable for retarding myopic progression in preschool- to school-age children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...