Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 11: 801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595494

RESUMO

Recombinant tissue plasminogen activator (rt-PA) is used to treat acute ischemic stroke but is only effective if administered within 4.5 h after stroke onset. Delayed rt-PA treatment causes blood-brain barrier (BBB) disruption and hemorrhagic transformation. The compound 2-(-2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered antagonist of high-affinity postsynaptic N-methyl-D-aspartate (NMDA) receptors, has been shown to have neuroprotective effects in ischemia. Here, we investigated whether combining 2-BFI and rt-PA can ameliorate BBB disruption and prolong the therapeutic window in a rat model of embolic middle cerebral artery occlusion (eMCAO). Ischemia was induced in male Sprague Dawley rats by eMCAO, after which they were treated with 2-BFI (3 mg/kg) at 0.5 h in combination with rt-PA (10 mg/kg) at 6 or 8 h. Control rats were treated with saline or 2-BFI or rt-PA. Combined therapy with 2-BFI and rt-PA (6 h) reduced the infarct volume, denatured cell index, BBB permeability, and brain edema. This was associated with increased expression of aquaporin 4 (AQP4) and tight junction proteins (occludin and ZO-1) and downregulation of intercellular adhesion molecule 1 (ICAM-1) and matrix metalloproteinases 2 and 9 (MMP2 and MMP9). We conclude that 2-BFI protects the BBB from damage caused by delayed rt-PA treatment in ischemia. 2-BFI may therefore extend the therapeutic window up to 6 h after stroke onset in rats and may be a promising therapeutic strategy for humans. However, mechanisms to explain the effects oberved in the present study are not yet elucidated.

2.
Front Pharmacol ; 11: 182, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184732

RESUMO

Acute ischemic stroke is a serious disease that endangers human health. In our efforts to develop an effective therapy, we previously showed that the potent, highly selective inhibitor of soluble epoxide hydrolase called 1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) protects the brain against focal ischemia in rats. Here we explored the mechanism of TPPU action by assessing whether it could preserve blood-brain barrier integrity and reduce apoptosis in the brain during permanent middle cerebral artery occlusion in male Sprague-Dawley rats. TPPU administration at the onset of stroke and once daily thereafter led to smaller infarct volume and brain edema as well as milder neurological deficits. TPPU significantly inhibited the activity of soluble epoxide hydrolase and matrix metalloproteases 2 and 9, reducing 14,15-DHET levels, while increasing expression of tight junction proteins. TPPU decreased numbers of apoptotic cells by down-regulating the pro-apoptotic proteins BAX and Caspase-3, while up-regulating the anti-apoptotic protein BCL-2. Our results suggest that TPPU can protect the blood-brain barrier and reduce the apoptosis of brain tissue caused by ischemia.

3.
Neural Regen Res ; 13(12): 2111-2118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30323139

RESUMO

We previously demonstrated that administering 2-(2-benzofuranyl)-2-imidazolin (2-BFI), an imidazoline I2 receptor agonist, immediately after ischemia onset can protect the brain from ischemic insult. However, immediate administration after stroke is difficult to realize in the clinic. Thus, the therapeutic time window of 2-BFI should be determined. Sprague-Dawley rats provided by Wenzhou Medical University in China received right middle cerebral artery occlusion for 120 minutes, and were treated with 2-BFI (3 mg/kg) through the caudal vein at 0, 1, 3, 5, 7, and 9 hours after reperfusion. Neurological function was assessed using the Longa's method. Infarct volume was measured by 2,3,5-triphenyltetrazolium chloride assay. Morphological changes in the cortical penumbra were observed by hematoxylin-eosin staining under transmission electron microscopy . The apoptosis levels in the ipsilateral cortex were examined with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The protein expression of Bcl-2 and BAX was detected using immunohistochemistry. We found the following: Treatment with 2-BFI within 5 hours after reperfusion obviously improved neurological function. Administering 2-BFI within 9 hours after ischemia/reperfusion decreased infarct volume and alleviated apoptosis. 2-BFI administration at different time points after reperfusion alleviated the pathological damage of the ischemic penumbra and reduced the number of apoptotic neurons, but the protective effect was more obvious when administered within 5 hours. Administration of 2-BFI within 5 hours after reperfusion remarkably increased Bcl-2 expression and decreased BAX expression. To conclude, 2-BFI shows potent neuroprotective effects when administered within 5 hours after reperfusion, seemingly by up-regulating Bcl-2 and down-regulating BAX expression. The time window provided clinical potential for ischemic stroke by 2-BFI.

4.
Brain Res ; 1699: 142-149, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30170015

RESUMO

Stroke is the third leading cause of death and disability in developing countries. The effective therapy for acute ischemic stroke is thrombolysis with recombinant tissue plasminogen activator (rt-PA) within 4.5 h of stroke onset. An effective post-ischemic neuroprotectant would extend the advantages of rt-PA, and protect against complications of thrombolysis. We previously reported that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered ligand for high-affinity type 2 imidazoline receptor (I2R), provides neuroprotection against ischemic stroke in rats. Here we investigated the protective effects of 2-BFI in combination with delayed intravenous rt-PA after stroke induced by embolic middle cerebral artery occlusion (eMCAO) in rats. Infarct size was determined using 2,3,5-triphenyltrazolium chloride staining, while neurological deficit was assessed based on neurological score. Numbers of apoptotic cells in vivo were estimated using TUNEL stain, and expression of the pro-apoptotic protein BAX and anti-apoptotic protein BCL-2 were quantified by Western blotting. The results showed that 2-BFI (3 mg/kg) administered at 0.5 h after embolic MCAO combined with rt-PA (10 mg/kg) administered at 6 h reduced brain infarct size, mitigated neurological deficit, decreased the number of TUNEL-positive cells, down-regulated BAX expression, and up-regulated BCL-2 expression. These findings suggest that 2-BFI may extend the therapeutic window of rt-PA to 6 h after embolic stroke onset in rats.


Assuntos
Benzofuranos/farmacologia , Embolia/tratamento farmacológico , Imidazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Embolia/patologia , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia
5.
J Stroke Cerebrovasc Dis ; 27(6): 1481-1489, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29398538

RESUMO

BACKGROUND: We showed previously that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a ligand to type 2 imidazoline receptor (I2R) exerts neuroprotective effects in ischemia stroke via an unknown mechanism. The present study was to investigate whether 2-BFI can protect the neurovascular unit (NVU) using a rat model of 90 min focal cerebral ischemia. METHODS: Rats were randomly divided into three groups: thesham-operated group; the vehicle control group and the 2-BFI group which received 2-BFI (3 mg/kg) immediately after the start of middle cerebralartery occlusion (MCAO). Neurological deficit score, infarct size, apoptosis level, brain water content and Evans Blue extravasation were assessed at 24 h after stroke. Expressions of occludin and zonula occludens 1 (ZO-1), collagen IV, aquaporin-4 (AQP-4), matrix metalloproteinase-9 (MMP-9) and MMP-2 were assessed by Western blotting. RESULTS: 2-BFI treatment was associated with significant improvement of neurological performance and decreased infarct volume at 24 h after stroke. Apoptosis level reduced significantly by 2-BFI compared to the vehicle group (34.3 ± 5.4% vs 56.1 ± 7.9%, p < 0.05). Significant decreased of brain water content (79.5 ± 2.6% vs 84.62 ± 2%, p < 0.05) and Evans Blue extravasation (1.2 ± 0.5 vs 2.5 ± 0.41 µg/g, p < 0.05) of ipsilateral hemisphere was observed in 2-BFI group compared to vehicle group. Expressions of occludin, ZO-1 and collagen IV were significantly higher while MMP-9 level significantly lower in 2-BFI group. AQP-4 and MMP-2 showed no difference between 2-BFI and the vehicle groups. CONCLUSIONS: These results suggest that the neuroprotective effects of 2-BFI in acute ischemic brain damage are at least partly due to the drug's ability to improve the functions of NVU.


Assuntos
Benzofuranos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Imidazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Modelos Animais de Doenças , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley
6.
Neurosci Res ; 133: 1-6, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29107612

RESUMO

Astrocytes play a pivotal role in neuronal survival in the setting of post-ischemic brain inflammation, but the astrocyte-derived mediators of ischemic brain injury remain to be defined. 2-(2-Benzofu-ranyl)-2-imidazoline (2-BFI) is a newly discovered ligand for high-affinity imidazoline I2 receptors (I2Rs) mainly located on the mitochondrial outer membrane in astrocytes. We previously reported that in a rat model of cerebral ischemia-reperfusion injury, 2-BFI limits infarct volume, reduces neurological impairment scores, and inhibits neuronal apoptosis in the ischemic penumbra. This study was performed to clarify the underlying mechanism in an astrocyte oxygen-glucose deprivation (OGD) model. The results show that 2-BFI reduces lipid peroxidation and inhibits mitochondria apoptotic pathways.


Assuntos
Astrócitos/efeitos dos fármacos , Benzofuranos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Glucose/deficiência , Imidazóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Caspase 3/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...