Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931112

RESUMO

Field ridges are commonly viewed as the stable semi-natural habitats for maintaining plant diversity in the agricultural landscape. The high plant diversity could further support higher animal diversity. But following the adoption of well-facilitated farmland construction measures in China, many field ridges have been disproportionately neglected or destroyed. Empirical studies delineating the relationships between plant and animal diversity in these field ridges in the paddy landscape remain scant, especially in China, which has the most rice production. A two-year field ridge evaluation was conducted in the Chengdu Plain area, covering 30 paddy landscapes. This investigation scrutinizes the shape attributes of field ridges, their plant diversity, and the associated animal α-diversity and community compositions, including spiders, carabids, birds, frogs, and rice planthoppers. In the results of Pearson's correlation analysis, a significant inconsistent correlation was observed between plant diversity and animal diversity. The analysis of community structure heterogeneity also revealed no correspondence for species composition between plant and animal communities (i.e., spiders, carabids, and birds), while the non-metric multidimensional scale analysis indicated a substantial difference in the species composition of spiders or plants even within the same field ridge between 2020 and 2021. We argue that the implementation of intensive management practices in paddy landscapes, such as machine ploughing and harvesting and herbicide spraying with drones, leads to a scarcity of stable animal and plant communities in field ridges. Therefore, besides retaining these field ridges in paddy landscapes, maintaining the long-term stable ridges by refraining from herbicide spraying or artificial weeding, as well as avoiding winter wheat cultivating in field ridges, will contribute to protecting biodiversity of field ridges as semi-natural habitats.

2.
Org Lett ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934368

RESUMO

Reported herein is a practical, economical, and efficient construction of 3-alkylated quinoxalin-2(1H)-ones with alkyl carboxylic acids and alkyl iodides by quinoxalin-2(1H)-one excitation and cobaloxime catalysis. Primary, secondary, and tertiary alkyl iodides and carboxylic acids all could be efficiently transferred into target products with excellent functional group tolerance. Mechanism studies reveal that the quinoxalin-2(1H)-one derivatives could be directly excited and yield alkyl carbon radicals from alkyl carboxylic acids and alkyl iodides with the aid of the cobaloxime complex.

3.
Pestic Biochem Physiol ; 202: 105933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879325

RESUMO

Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.


Assuntos
Berberina , Citrus , Metabolismo Energético , Geotrichum , Doenças das Plantas , Esporos Fúngicos , Citrus/microbiologia , Geotrichum/efeitos dos fármacos , Geotrichum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Berberina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fungicidas Industriais/farmacologia
4.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908856

RESUMO

BACKGROUND: Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS: TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS: The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS: The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Linfócitos do Interstício Tumoral , Estruturas Linfoides Terciárias , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Estruturas Linfoides Terciárias/imunologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/genética , Feminino , Masculino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Prognóstico , Estudos de Coortes , Idoso
5.
Antioxidants (Basel) ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929168

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.

6.
JMIR Public Health Surveill ; 10: e57807, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896444

RESUMO

BACKGROUND: The World Health Organization declared mpox an international public health emergency. Since January 1, 2022, China has been ranked among the top 10 countries most affected by the mpox outbreak globally. However, there is a lack of spatial epidemiological studies on mpox, which are crucial for accurately mapping the spatial distribution and clustering of the disease. OBJECTIVE: This study aims to provide geographically accurate visual evidence to determine priority areas for mpox prevention and control. METHODS: Locally confirmed mpox cases were collected between June and November 2023 from 31 provinces of mainland China excluding Taiwan, Macao, and Hong Kong. Spatiotemporal epidemiological analyses, including spatial autocorrelation and regression analyses, were conducted to identify the spatiotemporal characteristics and clustering patterns of mpox attack rate and its spatial relationship with sociodemographic and socioeconomic factors. RESULTS: From June to November 2023, a total of 1610 locally confirmed mpox cases were reported in 30 provinces in mainland China, resulting in an attack rate of 11.40 per 10 million people. Global spatial autocorrelation analysis showed that in July (Moran I=0.0938; P=.08), August (Moran I=0.1276; P=.08), and September (Moran I=0.0934; P=.07), the attack rates of mpox exhibited a clustered pattern and positive spatial autocorrelation. The Getis-Ord Gi* statistics identified hot spots of mpox attack rates in Beijing, Tianjin, Shanghai, Jiangsu, and Hainan. Beijing and Tianjin were consistent hot spots from June to October. No cold spots with low mpox attack rates were detected by the Getis-Ord Gi* statistics. Local Moran I statistics identified a high-high (HH) clustering of mpox attack rates in Guangdong, Beijing, and Tianjin. Guangdong province consistently exhibited HH clustering from June to November, while Beijing and Tianjin were identified as HH clusters from July to September. Low-low clusters were mainly located in Inner Mongolia, Xinjiang, Xizang, Qinghai, and Gansu. Ordinary least squares regression models showed that the cumulative mpox attack rates were significantly and positively associated with the proportion of the urban population (t0.05/2,1=2.4041 P=.02), per capita gross domestic product (t0.05/2,1=2.6955; P=.01), per capita disposable income (t0.05/2,1=2.8303; P=.008), per capita consumption expenditure (PCCE; t0.05/2,1=2.7452; P=.01), and PCCE for health care (t0.05/2,1=2.5924; P=.01). The geographically weighted regression models indicated a positive association and spatial heterogeneity between cumulative mpox attack rates and the proportion of the urban population, per capita gross domestic product, per capita disposable income, and PCCE, with high R2 values in north and northeast China. CONCLUSIONS: Hot spots and HH clustering of mpox attack rates identified by local spatial autocorrelation analysis should be considered key areas for precision prevention and control of mpox. Specifically, Guangdong, Beijing, and Tianjin provinces should be prioritized for mpox prevention and control. These findings provide geographically precise and visualized evidence to assist in identifying key areas for targeted prevention and control.


Assuntos
Análise Espaço-Temporal , Humanos , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Idoso , Surtos de Doenças , Criança , Pré-Escolar , Adulto Jovem , Lactente
7.
Sci China Life Sci ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38805063

RESUMO

Aberrant expression of circular RNAs (circRNAs) is frequently linked to colorectal cancer (CRC). Here, we identified circZFR as a promising biomarker for CRC diagnosis and prognosis. CircZFR was upregulated in CRC tissues and serum exosomes and its level was linked to cancer incidence, advanced-stages, and metastasis. In both in vitro and in vivo settings, circZFR promoted the growth and spread while suppressing apoptosis of CRC. Exosomes with circZFR overexpression promoted the proliferation and migration of cocultured CRC cells. Mechanistically, epithelial splicing regulatory protein 1 (ESRP1) in CRC cells may enhance the production of circZFR. BCL2-associated transcription factor 1 (BCLAF1) bound to circZFR, which prevented its ubiquitinated degradation. Additionally, circZFR sponged miR-3127-5p to boost rhotekin 2 (RTKN2) expression. Our TCP1-CD-QDs nanocarrier was able to carry and deliver circZFR siRNA (si-circZFR) to the vasculature of CRC tissues and cells, which inhibited the growth of tumors in patient-derived xenograft (PDX) models. Taken together, our results show that circZFR is an oncogenic circRNA, which promotes the development and spread of CRC in a BCLAF1 and miR-3127-5p-dependent manner. CircZFR is a possible serum biopsy marker for the diagnosis and a desirable target for further treatment of CRC.

8.
Biol Res ; 57(1): 30, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760850

RESUMO

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Assuntos
Ciclo Celular , Glioma , Glutaratos , Isocitrato Desidrogenase , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutação , Apoptose/genética , Proliferação de Células/genética , Animais , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Nus
9.
Regen Biomater ; 11: rbae039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746707

RESUMO

Decellularized extracellular matrix hydrogel, especially that derived from spinal cord (DSCM hydrogel), has been actively considered as a functional biomaterial for remodeling the extracellular matrix of the native tissue, due to its unique characteristics in constructing pro-regenerative microenvironment for neural stem cells (NSCs). Furthermore, DSCM hydrogel can provide multiple binding domains to growth factors and drugs. Therefore, both exogenous neurotrophic factors and anti-inflammatory drugs are highly desired to be incorporated into DSCM hydrogel, which may synergistically modulate the complex microenvironment at the lesion site after spinal cord injury (SCI). Herein, neurotrophin-3 (NT-3) and curcumin (Cur) were integrated into DSCM hydrogel for SCI therapy. Due to different affinities to the DSCM hydrogel, NT-3 underwent a controlled release manner, while curcumin released explosively within the first 24 h, followed by rather sustained but slower release. The integration of both NT-3 and curcumin significantly enhanced NSCs proliferation and their neuronal differentiation. Meanwhile, the release of curcumin promoted macrophages polarization into anti-inflammatory subtypes, which further facilitated NSCs differentiation into neurons. The in situ injected DSCM + NT3 + Cur hydrogel exerted superior capability in alleviating the inflammatory responses in rat contused spinal cord. Compared to DSCM hydrogel alone, DSCM + NT3 + Cur hydrogel more significantly promoted the recruitment of NSCs and their neuronal differentiation at the lesion site. These outcomes favored functional recovery, as evidenced by the improved hind limb movement. Overall, the bioactive DSCM hydrogel can serve as a multifunctional carrier for cooperatively release of growth factors and drugs, which significantly benefits microenvironment regulation and nerve regeneration after SCI.

10.
ACS Appl Mater Interfaces ; 16(23): 29716-29727, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814480

RESUMO

The emergence of XBB.1.16 has gained rapid global prominence. Previous studies have elucidated that the infection of SARS-CoV-2 induces alterations in the mitochondrial integrity of host cells, subsequently influencing the cellular response to infection. In this study, we compared the differences in infectivity and pathogenicity between XBB.1.16 and the parental Omicron sublineages BA.1 and BA.2 and assessed their impact on host mitochondria. Our findings suggest that, in comparison with BA.1 and BA.2, XBB.1.16 exhibits more efficient spike protein cleavage, more efficient mediating syncytia formation, mild mitochondriopathy, and less pathogenicity. Altogether, our investigations suggest that, based on the mutation of key sites, XBB.1.16 exhibited enhanced infectivity but lower pathogenicity. This will help us to further investigate the biological functions of key mutation sites.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Humanos , COVID-19/virologia , Mitocôndrias/metabolismo , Animais , Mutação , Chlorocebus aethiops , Células Vero , Camundongos , Células HEK293
11.
Cancer Lett ; 593: 216963, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768682

RESUMO

Neoadjuvant tyrosine kinase inhibitor (TKI) therapy is an important treatment option for advanced renal cell carcinoma (RCC). Many RCC patients may fail to respond or be resistant to TKI therapy. We aimed to explore the key mechanisms of neoadjuvant therapy résistance. We obtained tumor samples from matched pre-treatment biopsy and post-treatment surgical samples and performed single-cell RNA sequencing. Sunitinib-resistant ccRCC cell lines were established. Ferroptosis was detected by ferrous ion and lipid peroxidation levels. Tumor growth and resistance to Sunitinib was validated in vitro and vivo. Immunohistochemistry was used to validate the levels key genes and lipid peroxidation. Multi-center cohorts were included, including TCGA, ICGC, Checkmate-025 and IMmotion151 clinical trial. Survival analysis was performed to identify the associated clinical and genomic variables. Intratumoral heterogeneity was first described in the whole neoadjuvant management. The signature of endothelial cells was correlated with drug sensitivity and progression-free survival. Ferroptosis was shown to be the key biological program in malignant cell resistance. We observed tissue lipid peroxidation was negatively correlated with IL6 and tumor response. TKI-resistant cell line was established. SLC7A11 knockdown promoted cell growth and lipid peroxidation, increased the ferroptosis level, and suppressed the growth of tumor xenografts significantly (P < 0.01). IL6 could reverse the ferroptosis and malignant behavior caused by SLC7A11 (-) via JAK2/STAT3 pathway, which was rescued by the ferroptosis inducer Erastin. Our data indicate that ferroptosis is a novel strategy for advanced RCC treatment, which activated by IL6, providing a new idea for resistance to TKIs.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma de Células Renais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Neoplasias Renais , Terapia Neoadjuvante , Sunitinibe , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Terapia Neoadjuvante/métodos , Sunitinibe/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Proteínas Quinases/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Feminino , Masculino , Terapia de Alvo Molecular , Interleucina-6/metabolismo , Interleucina-6/genética , Progressão da Doença
12.
Acta Biomater ; 181: 202-221, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38692468

RESUMO

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Assuntos
Polpa Dentária , Hidrogéis , Regeneração , Células-Tronco , Polpa Dentária/citologia , Animais , Hidrogéis/química , Suínos , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Diferenciação Celular/efeitos dos fármacos , Endodontia Regenerativa/métodos , Humanos , Engenharia Tecidual/métodos
13.
Comput Struct Biotechnol J ; 23: 1877-1885, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38707542

RESUMO

Transcription factors (TFs) are major contributors to gene transcription, especially in controlling cell-specific gene expression and disease occurrence and development. Uncovering the relationship between TFs and their target genes is critical to understanding the mechanism of action of TFs. With the development of high-throughput sequencing techniques, a large amount of TF-related data has accumulated, which can be used to identify their target genes. In this study, we developed TFTG (Transcription Factor and Target Genes) database (http://tf.liclab.net/TFTG), which aimed to provide a large number of available human TF-target gene resources by multiple strategies, besides performing a comprehensive functional and epigenetic annotations and regulatory analyses of TFs. We identified extensive available TF-target genes by collecting and processing TF-associated ChIP-seq datasets, perturbation RNA-seq datasets and motifs. We also obtained experimentally confirmed relationships between TF and target genes from available resources. Overall, the target genes of TFs were obtained through integrating the relevant data of various TFs as well as fourteen identification strategies. Meanwhile, TFTG was embedded with user-friendly search, analysis, browsing, downloading and visualization functions. TFTG is designed to be a convenient resource for exploring human TF-target gene regulations, which will be useful for most users in the TF and gene expression regulation research.

14.
Ecotoxicol Environ Saf ; 276: 116283, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574647

RESUMO

Equilibration of metal metabolism is critical for normal liver function. Most epidemiological studies have only concentrated on the influence of limited metals. However, the single and synergistic impact of multiple-metal exposures on abnormal liver function (ALF) are still unknown. A cross-sectional study involving 1493 Chinese adults residing in Shenzhen was conducted. Plasma concentrations of 13 metals, including essential metals (calcium, copper, cobalt, iron, magnesium, manganese, molybdenum, zinc, and selenium) and toxic metals (aluminum, cadmium, arsenic, and thallium) were detected by the inductively coupled plasma spectrometry (ICP-MS). ALF was ascertained as any observed abnormality from albumin, alanine transaminase, aspartate transaminase, γ-glutamyl transpeptidase, and direct bilirubin. Diverse statistical methods were used to evaluate the single and mixture effect of metals, as well as the dose-response relationships with ALF risk, respectively. Mediation analysis was conducted to evaluate the role of blood lipids in the relation of metal exposure with ALF. The average age of subjects was 59.7 years, and 56.7 % were females. Logistic regression and the least absolute shrinkage and selection operator (LASSO) penalized regression model consistently suggested that increased levels of arsenic, aluminum, manganese, and cadmium were related to elevated risk of ALF; while magnesium and zinc showed protective effects on ALF (all p-trend < 0.05). The grouped weighted quantile sum (GWQS) regression revealed that the WQS index of essential metals and toxic metals showed significantly negative or positive relationship with ALF, respectively. Aluminum, arsenic, cadmium, and manganese showed linear whilst magnesium and zinc showed non-linear dose-response relationships with ALF risk. Mediation analysis showed that LDL-c mediated 4.41 % and 14.74 % of the relationship of plasma cadmium and manganese with ALF, respectively. In summary, plasma aluminum, arsenic, manganese, cadmium, magnesium, and zinc related with ALF, and LDL-c might underlie the pathogenesis of ALF associated with cadmium and manganese exposure. This study may provide critical public health significances in liver injury prevention and scientific evidence for the establishment of environmental standard.


Assuntos
LDL-Colesterol , Metais , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Transversais , China , Metais/sangue , Metais/toxicidade , LDL-Colesterol/sangue , Fígado/efeitos dos fármacos , Idoso , Exposição Ambiental/estatística & dados numéricos , Adulto , Poluentes Ambientais/sangue , Análise de Mediação , Arsênio/sangue , Arsênio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia
15.
J Sci Food Agric ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597282

RESUMO

BACKGROUND: Peach gum (PG) is an exudate of the peach tree (Prunus persica of the Rosaceae family), which consists primarily of polysaccharides with a large molecular weight and branching structure. Consequently, PG can only swell in water and does not dissolve easily, which severely limits its application. Current conventional extraction methods for PG polysaccharide (PGPS) are time consuming and inefficient. This study investigated the impact of ultrasonic-assisted extraction (UAE) on PGPS structure and conformation, and their relationship to hypoglycemic activity in vitro. RESULTS: In comparison with conventional aqueous extraction, UAE enhanced PGPS yielded from 28.07-32.83% to 80.37-84.90% (w/w) in 2 h. It drastically decreased the molecular size and conformational parameters of PGPS, including weight-average molecular weight (Mw), number-average molecular weight (Mn), z-average radius of gyration (Rg), hydrodynamic radius (Rh) and instrinsic viscosity ([η]) values. Peach gum polysaccharide conformation converted extended molecules to flexible random coil chains or compact spheres with no obvious primary structure alteration. Furthermore, UAE altered the flow behavior of PGPS solution from that of a non-Newtonian fluid to that of a Newtonian fluid. As a result, PGPS treated with UAE displayed weaker inhibitory activity than untreated PGPS, mostly because UAE weakens the binding strength of PGPS to α-glucosidase. However, this negative effect of UAE on PGPS activity was compensated by the increased solubility of polysaccharide. This enabled PGPS to achieve a wider range of doses. CONCLUSION: Ultrasonic-assisted extraction is capable of degrading PGPS efficiently while preserving its primary structure, resulting in a Newtonian fluid solution. The degraded PGPS conformations displayed a consistent correlation with their inhibitory effect on α-glucosidase activity. © 2024 Society of Chemical Industry.

16.
Food Chem ; 451: 139397, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678662

RESUMO

This study investigated the dynamic degradation process of peach gum polysaccharide (PGPS) within ultrasonic field. The results show that the molecular weight, intrinsic viscosity, and polydispersity of PGPS were rapidly reduced within the initial 30 min and then gradually decreased. The solubility of PGPS was drastically improved from 3.0% to 40.0-42.0% (w/w) after 120 min. The conformation of PGPS changed from an extended chain to a flexible random coil within initial time of ultrasound, and gradually tended to be compact spheres. The apparent viscosity of PGPS significantly decreased after 30 min, and PGPS solution exhibited a near-Newtonian fluid behavior. It is possible that these above changes are a result of random cleavage of the decrosslinking and the backbone of PGPS, resulting in the preservation of its primary structure. The results will provide a fundamental basis for orientation design and process control of ultrasonic degradation of PGPS.


Assuntos
Peso Molecular , Gomas Vegetais , Polissacarídeos , Prunus persica , Polissacarídeos/química , Gomas Vegetais/química , Viscosidade , Prunus persica/química , Ultrassom , Solubilidade
17.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38643710

RESUMO

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Assuntos
Transporte Ativo do Núcleo Celular , Catequina , NF-kappa B , Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
J Inflamm Res ; 17: 2299-2308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645879

RESUMO

Background: Since there is no clear priority or selection principle in the guidelines for myasthenia crisis, therapeutic plasma exchange (TPE) and intravenous immunoglobulin are often administered randomly. However, it should be more prudent in taking TPE due to its higher cost and risk. Studying its early response factors is crucial for managing myasthenia crisis and can improve medical and economic benefits. Methods: A prospective observational study was conducted, and patients classified as having "impending myasthenia crisis" or experiencing a myasthenia crisis and treated by TPE were included. The primary endpoint was the response after TPE. Univariate logistic regression analysis and repeated measurement were performed to analyze factors related to TPE efficacy. Results: A total of 30 patients who treated with TPE as their fast-acting treatments were enrolled. After TPE, those whose QMGs and/or MGCs decreased by ≥5 points or ≥30% of the baseline were judged as "response group", accounting for 66.67% (20/30). Respiratory symptoms had a response rate of 72.00% (18/25), showing the most remarkable improvement. Meanwhile, extraocular symptoms were the least sensitive, with only 8.00% (2/25) showing efficacy. Thymoma (100.00% vs 50.00%, P=0.002) and a high concentration of AChR-Ab (37.37 nmol/L vs 25.4 nmol/L, P=0.039) were common in the early response group. Repeated measures showed significant changes in AChR-Ab and CD19+ B cells before and after TPE (all with P < 0.05). After treatment, the CD19+ B cells tended to decrease in the response group. Discussion: These results indicated that, for AChR-Ab positive generalized MG, TPE can quickly improve respiratory symptoms. Thymoma and a high concentration of AChR-Ab before TPE predict an early better response. Additionally, TPE may work by decreasing AChR-Ab levels and inducing immune regulation. Future prospective and randomized controlled studies are needed.

19.
BMC Complement Med Ther ; 24(1): 174, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664638

RESUMO

Liver cancer is a common malignant tumor worldwide, traditional Chinese medicine is one of the treatment measures for liver cancer because of its good anti-tumor effects and fewer toxic side effects. Ginsenoside CK (CK) is an active component of ginseng. This study explored the mechanism by which CK induced ferroptosis in liver cancer cells. We found that CK inhibited the proliferation of HepG2 and SK-Hep-1 cells, induced ferroptosis of cells. Ferrostatin-1, an ferroptosis inhibitor, was used to verify the role of CK in inducing ferroptosis of liver cancer cells. Network pharmacological analysis identified the FOXO pathway as a potential mechanism of CK, and western blot showed that CK inhibited p-FOXO1. In cells treated with the FOXO1 inhibitor AS1842856, further verify the involvement of the FOXO pathway in regulating CK-induced ferroptosis in HepG2 and SK-Hep-1 cells. A HepG2 cell-transplanted tumor model was established in nude mice, and CK inhibited the growth of transplanted tumors in nude mice, p-FOXO1 was decreased in tumor tissues, and SLC7A11 and GPX4 expressions were also down-regulated after CK treatment. These findings suggested that CK induces ferroptosis in liver cancer cells by inhibiting FOXO1 phosphorylation and activating the FOXO signaling pathway, thus playing an antitumor role.


Assuntos
Ferroptose , Ginsenosídeos , Neoplasias Hepáticas , Camundongos Nus , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Ginsenosídeos/farmacologia , Humanos , Animais , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Camundongos Endogâmicos BALB C , Proteína Forkhead Box O1/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...