Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Nat Commun ; 15(1): 4692, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824127

RESUMO

Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.

2.
Microsyst Nanoeng ; 10: 72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828404

RESUMO

The collection of multiple-channel electrophysiological signals enables a comprehensive understanding of the spatial distribution and temporal features of electrophysiological activities. This approach can help to distinguish the traits and patterns of different ailments to enhance diagnostic accuracy. Microneedle array electrodes, which can penetrate skin without pain, can lessen the impedance between the electrodes and skin; however, current microneedle methods are limited to single channels and cannot achieve multichannel collection in small areas. Here, a multichannel (32 channels) microneedle dry electrode patch device was developed via a dimensionality reduction fabrication and integration approach and supported by a self-developed circuit system to record weak electrophysiological signals, including electroencephalography (EEG), electrocardiogram (ECG), and electromyography (EMG) signals. The microneedles reduced the electrode-skin contact impedance by penetrating the nonconducting stratum corneum in a painless way. The multichannel microneedle array (MMA) enabled painless transdermal recording of multichannel electrophysiological signals from the subcutaneous space, with high temporal and spatial resolution, reaching the level of a single microneedle in terms of signal precision. The MMA demonstrated the detection of the spatial distribution of ECG, EMG and EEG signals in live rabbit models, and the microneedle electrode (MNE) achieved better signal quality in the transcutaneous detection of EEG signals than did the conventional flat dry electrode array. This work offers a promising opportunity to develop advanced tools for neural interface technology and electrophysiological recording.

3.
Food Chem X ; 22: 101491, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840727

RESUMO

Maillard reaction products (MRPs) derived from rice protein isolate hydrolysate and D-xylose, with or without L-cysteine, were developed as a potential meat flavoring. The combined impact of temperature (80-140 °C) and cysteine on fundamental physicochemical characteristics, antioxidant activity, and flavor of MRPs were investigated through assessments of pH, color, UV-visible spectra, fluorescence spectra, free amino acids, volatile compounds, E-nose, E-tongue, and sensory evaluation. Results suggested that increasing temperature would reduce pH, deepen color, promote volatile compounds formation, and reduce the overall umami and bitterness. Cysteine addition contributed to the color inhibition, enhancement of DPPH radical-scavenging activity and reducing power, improvement in mouthfulness and continuity, reduction of bitterness, and the formation of sulfur compounds responsible for meaty flavor. Overall, MRPs prepared at 120 °C with cysteine addition could be utilized as a potential meat flavoring with the highest antioxidant activity and relatively high mouthfulness, continuity, umami, meaty aroma, and relatively low bitterness.

4.
Blood Rev ; : 101220, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38876840

RESUMO

Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin ß3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.

5.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823591

RESUMO

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Assuntos
Astrócitos , Compostos Benzidrílicos , Dieta Hiperlipídica , Microbioma Gastrointestinal , Glucosídeos , Doenças Neuroinflamatórias , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Astrócitos/efeitos dos fármacos , Glucosídeos/farmacologia , Camundongos , Compostos Benzidrílicos/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Encéfalo/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Disbiose
6.
NPJ Vaccines ; 9(1): 95, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821980

RESUMO

Although irradiated induced-pluripotent stem cells (iPSCs) as a prophylactic cancer vaccine elicit an antitumor immune response, the therapeutic efficacy of iPSC-based cancer vaccines is not promising due to their insufficient antigenicity and the immunosuppressive tumor microenvironment. Here, we found that neoantigen-engineered iPSC cancer vaccines can trigger neoantigen-specific T cell responses to eradicate cancer cells and increase the therapeutic efficacy of RT in poorly immunogenic colorectal cancer (CRC) and triple-negative breast cancer (TNBC). We generated neoantigen-augmented iPSCs (NA-iPSCs) by engineering AAV2 vector carrying murine neoantigens and evaluated their therapeutic efficacy in combination with radiotherapy. After administration of NA-iPSC cancer vaccine and radiotherapy, we found that ~60% of tumor-bearing mice achieved a complete response in microsatellite-stable CRC model. Furthermore, splenocytes from mice treated with NA-iPSC plus RT produced high levels of IFNγ secretion in response to neoantigens and had a greater cytotoxicity to cancer cells, suggesting that the NA-iPSC vaccine combined with radiotherapy elicited a superior neoantigen-specific T-cell response to eradicate cancer cells. The superior therapeutic efficacy of NA-iPSCs engineered by mouse TNBC neoantigens was also observed in the syngeneic immunocompetent TNBC mouse model. We found that the risk of spontaneous lung and liver metastasis was dramatically decreased by NA-iPSCs plus RT in the TNBC animal model. Altogether, these results indicated that autologous iPSC cancer vaccines engineered by neoantigens can elicit a high neoantigen-specific T-cell response, promote tumor regression, and reduce the risk of distant metastasis in combination with local radiotherapy.

7.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38718814

RESUMO

Objective.To evaluate the feasibility of using a deep learning dose prediction approach to identify patients who could benefit most from proton therapy based on the normal tissue complication probability (NTCP) model.Approach.Two 3D UNets were established to predict photon and proton doses. A dataset of 95 patients with localized prostate cancer was randomly partitioned into 55, 10, and 30 for training, validation, and testing, respectively. We selected NTCP models for late rectum bleeding and acute urinary urgency of grade 2 or higher to quantify the benefit of proton therapy. Propagated uncertainties of predicted ΔNTCPs resulting from the dose prediction errors were calculated. Patient selection accuracies for a single endpoint and a composite evaluation were assessed under different ΔNTCP thresholds.Main results.Our deep learning-based dose prediction technique can reduce the time spent on plan comparison from approximately 2 days to as little as 5 seconds. The expanded uncertainty of predicted ΔNTCPs for rectum and bladder endpoints propagated from the dose prediction error were 0.0042 and 0.0016, respectively, which is less than one-third of the acceptable tolerance. The averaged selection accuracies for rectum bleeding, urinary urgency, and composite evaluation were 90%, 93.5%, and 93.5%, respectively.Significance.Our study demonstrates that deep learning dose prediction and NTCP evaluation scheme could distinguish the NTCP differences between photon and proton treatment modalities. In addition, the dose prediction uncertainty does not significantly influence the decision accuracy of NTCP-based patient selection for proton therapy. Therefore, automated deep learning dose prediction and NTCP evaluation schemes can potentially be used to screen large patient populations and to avoid unnecessary delays in the start of prostate cancer radiotherapy in the future.


Assuntos
Automação , Aprendizado Profundo , Neoplasias da Próstata , Terapia com Prótons , Dosagem Radioterapêutica , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Sistemas de Apoio a Decisões Clínicas , Órgãos em Risco/efeitos da radiação , Probabilidade , Incerteza
8.
J Phys Chem Lett ; 15(21): 5612-5617, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38758204

RESUMO

The Rydberg radical NH4 and the double Rydberg anion (DRA) NH4- have long aroused researchers' interests due to their potential for exploring the reaction dynamics of the H + NH3 → H2 + NH2 reaction, a prototypical penta-atomic system. In this study, we present high-resolution photodetachment spectroscopy of DRA NH4- and ion-molecule complex H-(NH3). We observed multiple new photodetachment channels of DRA NH4-. The energy level of the excited state (3p 2T2) of the Rydberg radical NH4 was determined to be 15052(94) cm-1, in excellent agreement with the principal Schüler band (15061.61 cm-1). Additionally, we observed the tunneling dissociation of NH4- in a cryogenic ion trap with its dissociation lifetime determined to be 19(2) ms.

9.
Nanoscale ; 16(20): 10064-10070, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712853

RESUMO

The widespread applicability of perovskite nanocrystals (PeNCs) is impeded by their intrinsic instability. A promising solution is utilizing robust chalcogenides as a protective shell to shield the sensitive luminescent cores from the external environment. However, the inferior structural stability and surface lability of PeNCs usually lead to perovskite phase transition during shell growth. Herein, we introduced smaller Zn ions to partially replace Pb ions in perovskites, which reduces the Pb-X bond length and enhances the Pb-X bond energy for inner lattice stabilization. Simultaneously, extra oleylammonium bromide (OAmBr) was added to protect the labile surface of PeNCs by compensating for the detachment of ligands and the loss of surface Br ions. As a result, the dual strategies enable the epitaxial growth of a ZnS shell and significantly enhance the chemical stability of CsZnPbBr3/ZnS core/shell PeNCs. After three thermal cycles ranging from 300 to 450 K, the core/shell PeNCs retained 70% of their initial photoluminescence (PL) intensity. In stark contrast, the pristine CsPbBr3 PeNCs exhibit complete PL quenching after just the first temperature cycle. For practical applications, the green core/shell PeNCs were integrated with commercially available red-emitting phosphors on a blue-emitting InGaN chip to fabricate a white light-emitting diode (WLED), which demonstrates a high luminous efficacy (LE) of 61.3 lm W-1 and nearly constant Commission Internationale de l'Eclairage (CIE) coordinates under varying operating currents.

10.
Anal Biochem ; 692: 115559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38723993

RESUMO

Bacteremia, as a serious infectious disease, has an increasing incidence and a high mortality rate. Early diagnosis and early treatment are crucial for improving the cure rate. In this work, we proposed an inductively coupled plasma mass spectrometry (ICP-MS)-based detection method combined with gold nanoparticle (Au NP) and silver nanoparticle (Ag NP) labeling for the simultaneous detection of Salmonella and Escherichia coli (E. coli O157:H7) in human blood samples. Salmonella and E. coli O157:H7 were captured by magnetic beads coupled with anti-8G3 and anti-7C2, and then specifically labeled by Au NP-anti-5H12 and Ag NP-anti-8B1 respectively, which were used as signal probes for ICP-MS detection. Under the optimal experimental conditions, the limits of detection of 164 CFU mL-1 for Salmonella, 220 CFU mL-1for E. coli O157:H7 and the linear ranges of 400-80,000 CFU mL-1Salmonella, 400-60,000 CFU mL-1 E. coli O157:H7 were obtained. The proposed method can realize the simultaneous detection of two types of pathogenic bacteria in human whole blood in 3.5 h, showing great potential for the rapid diagnosis of bacteremia in clinic.


Assuntos
Bacteriemia , Ouro , Espectrometria de Massas , Nanopartículas Metálicas , Salmonella , Prata , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Ouro/química , Humanos , Nanopartículas Metálicas/química , Prata/química , Espectrometria de Massas/métodos , Salmonella/isolamento & purificação , Escherichia coli O157/isolamento & purificação , Limite de Detecção
11.
Cancer Lett ; 595: 216987, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815798

RESUMO

Triple-negative breast cancer (TNBC) is a highly lethal malignancy with limited therapy options. Aberrant metabolism, a key hallmark of human cancers, plays a crucial role in tumor progression, therapeutic responses and TNBC-related death. However, the underlying mechanisms are not fully understood. In this study, we delineate a previously unrecognized role of aberrant glucose metabolism in regulating the turnover of Snail1, which is a key transcriptional factor of epithelial-mesenchymal transition (EMT) and critically contributes to the acquisition of stemness, metastasis and chemo-resistance. Mechanistically, we demonstrate that AMP-activated protein kinase (AMPK), when activated in response to glucose deprivation, directly phosphorylates Snail1 at Ser11. Such a phosphorylation modification of Snail1 facilitates its recruitment of the E3 ligase FBXO11 and promotes its degradation, thereby suppressing stemness, metastasis and increasing cellular sensitivity to chemotherapies in vitro and in vivo. Clinically, histological analyses reveal a negative correlation between p-AMPKα and Snail1 in TNBC specimens. Taken together, our findings establish a novel mechanism and functional significance of AMPK in linking glucose status to Snail1-dependent malignancies and underscore the potential of AMPK agonists as a promising therapeutic strategy in the management of TNBC.


Assuntos
Proteínas Quinases Ativadas por AMP , Transição Epitelial-Mesenquimal , Fatores de Transcrição da Família Snail , Neoplasias de Mama Triplo Negativas , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Humanos , Fosforilação , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Feminino , Linhagem Celular Tumoral , Camundongos , Glucose/metabolismo , Estabilidade Proteica , Metabolismo Energético/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
12.
Heliyon ; 10(9): e29350, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694110

RESUMO

Objectives: This study aimed to explore the spatial distribution of brain metastases (BMs) from breast cancer (BC) and to identify the high-risk sub-structures in BMs that are involved at first diagnosis. Methods: Magnetic resonance imaging (MRI) scans were retrospectively reviewed at our centre. The brain was divided into eight regions according to its anatomy and function, and the volume of each region was calculated. The identification and volume calculation of metastatic brain lesions were accomplished using an automatically segmented 3D BUC-Net model. The observed and expected rates of BMs were compared using 2-tailed proportional hypothesis testing. Results: A total of 250 patients with BC who presented with 1694 BMs were retrospectively identified. The overall observed incidences of the substructures were as follows: cerebellum, 42.1 %; frontal lobe, 20.1 %; occipital lobe, 9.7 %; temporal lobe, 8.0 %; parietal lobe, 13.1 %; thalamus, 4.7 %; brainstem, 0.9 %; and hippocampus, 1.3 %. Compared with the expected rate based on the volume of different brain regions, the cerebellum, occipital lobe, and thalamus were identified as higher risk regions for BMs (P value ≤ 5.6*10-3). Sub-group analysis according to the type of BC indicated that patients with triple-negative BC had a high risk of involvement of the hippocampus and brainstem. Conclusions: Among patients with BC, the cerebellum, occipital lobe and thalamus were identified as higher-risk regions than expected for BMs. The brainstem and hippocampus were high-risk areas of the BMs in triple negative breast cancer. However, further validation of this conclusion requires a larger sample size.

13.
Arch Med Sci ; 20(2): 384-401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757030

RESUMO

Introduction: Our goal was to systematically review the current evidence comparing the relative effectiveness of two maxillary sinus floor elevation (MSFE) approaches (internal and external) without bone grafts with that of conventional/grafted MSFE in patients undergoing implantation in the posterior maxilla. Material and methods: Medical databases (PubMed/Medline, Embase, Web of Science, and Cochrane Library) were searched for randomised controlled trials published between January 1980 and May 2023. A manual search of implant-related journals was also performed. Studies published in English that reported the clinical outcomes of MSFE with or without bone material were included. The risk of bias was assessed using the Cochrane Handbook Risk Assessment Tool. Meta-analyses and trial sequence analyses were performed on the included trials. Meta-regression analysis was performed using pre-selected covariates to account for substantial heterogeneity. The certainty of evidence for clinical outcomes was assessed using GRADEpro GDT online (Guideline Development Tool). Results: Seventeen studies, including 547 sinuses and 696 implants, were pooled for the meta-analysis. The meta-analysis showed no statistically significant difference between MSFE without bone grafts and conventional MSFE in terms of the implant survival rate in the short term (n = 11, I2 = 0%, risk difference (RD): 0.03, 95% confidence intervals (CI): -0.01-0.07, p = 0.17, required information size (RIS) = 307). Although conventional MSFE had a higher endo-sinus bone gain (n = 13, I2 = 89%, weighted mean difference (WMD): -1.24, 95% CI: -1.91- -0.57, p = 0.0003, RIS = 461), this was not a determining factor in implant survival. No difference in perforation (n = 13, I2 = 0%, RD = 0.03, 95% CI: -0.02-0.09, p = 0.99, RIS = 223) and marginal bone loss (n = 4, I2 = 0%, WMD = 0.05, 95% CI: -0.14-0.23, p = 0.62, no RIS) was detected between the two groups using meta-analysis. The pooled results of the implant stability quotient between the two groups were not robust on sensitivity analysis. Because of the limited studies reporting on the visual analogue scale, surgical time, treatment costs, and bone density, qualitative analysis was conducted for these outcomes. Conclusions: This systematic review revealed that both non-graft and grafted MSFE had high implant survival rates. Owing to the moderate strength of the evidence and short-term follow-up, the results should be interpreted with caution.

14.
ACS Appl Bio Mater ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38756018

RESUMO

Human growth hormone (hGH) has emerged as a promising therapeutic agent to prevent and treat skin photoaging. However, the success of hGH therapy largely lies in the availability of an optimal delivery system that enables the efficient delivery of hGH to the dermal layer of the skin. Here, we report a delivery system of hyaluronic acid/liposome-gel-encapsulated hGH (HA/HL-Gel) that can transdermally deliver hGH into the skin for hGH-based photoaging therapy through the upregulation of collagen type I (collagen-I). Specifically, hGH-liposomes were prepared by ethanol injection and then modified with HA to achieve specific targeting. The best formulation of HA/hGH-liposomes (HA/HL) had a high encapsulation efficiency (about 20%), with a size of 180 ± 1.2 nm. The optimized HA/HL was further incorporated into the carbomer gel to form an HA/HL-Gel. The biological activity of HA/HL on human dermal fibroblasts (HDFs) was confirmed by the elevated expression level of collagen-I through the enhanced local formation of insulin-like growth factor-1 (IGF-1) in the photoaging model. Moreover, HA/HL-Gel reduced ultraviolet (UV)-induced erythema and wrinkle formation. Meanwhile, immunohistochemical staining further showed higher levels of collagen-I in the HA/HL-Gel group compared to other groups tested. Taken together, these results demonstrate that HA/HL-Gel treatment could significantly ameliorate skin photoaging and thus may be used as a clinical potential for antiaging therapy.

15.
Eur J Public Health ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38756096

RESUMO

BACKGROUND: Understanding the burden of cervical cancer (CC) in young women aged 15-44 years old are essential for formulating effective preventive strategies. METHODS: Utilizing the Global Burden of Disease 2019 Study, we estimated incidence, disability-adjusted life-years (DALYs), years of life lost (YLLs) and years lived with disability (YLDs) due to CC among young women from 1990 to 2019. Additionally, we evaluated the temporal trends using estimated annual percentage changes (EAPCs) during this period. We conducted a decomposition analysis to assess the absolute contributions of three components: population growth, population age structure and epidemiologic changes. RESULTS: Globally, there were 187 609.22 incident cases of CC worldwide, resulting in 2621 917.39 DALYs in 2019. From1990 to 2019, the age-standardized rates were decline, only the age-standardized YLDs rate (EAPC = 0.02; 95% CI: -0.02 to 0.05) showed a stable trend. The largest increase in age-standardized incidence rate (ASIR) and age-standardized YLDs rate observed in the high-middle social demographic index (SDI) quintiles. Population growth and age structure changes were associated with substantial changes in cases of CC, especially in South Asia and East Asia. CONCLUSIONS: Globally, the burden of CC in young women continues to increase, as measured by the absolute number. As populations are growing and age structure changes were associated with substantial changes in cases of CC, governments will face increasing demand for treatment, and support services for CC, especially in South Asia and East Asia.

16.
Aerosol Sci Technol ; 58(3): 264-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706712

RESUMO

The ability to collect size-fractionated airborne particles that contain viable bacteria and fungi directly into liquid medium while also maintaining their viability is critical for assessing exposure risks. In this study, we present the BioCascade impactor, a novel device designed to collect airborne particles into liquid based on their aerodynamic diameter in three sequential stages (>9.74 µm, 3.94-9.74 µm, and 1.38-3.94 µm when operated at 8.5 L/min). Aerosol samples containing microorganisms - either Saccharomyces kudriavzevii or Micrococcus luteus, were used to evaluate the performance of the BioCascade (BC) paired with either the VIable Virus Aerosol Sampler (VIVAS) or a gelatin filter (GF) as stage 4 to collect particles <1.38 µm. Stages 2 and 3 collected the largest fractions of viable S. kudriavzevii when paired with VIVAS (0.468) and GF (0.519), respectively. Stage 3 collected the largest fraction of viable M. luteus particles in both BC+VIVAS (0.791) and BC+GF (0.950) configurations. The distribution function of viable microorganisms was consistent with the size distributions measured by the Aerodynamic Particle Sizer. Testing with both bioaerosol species confirmed no internal loss and no re-aerosolization occurred within the BC. Irrespective of the bioaerosol tested, stages 1, 3 and 4 maintained ≥80% of viability, while stage 2 maintained only 37% and 73% of viable S. kudriavzevii and M. luteus, respectively. The low viability that occurred in stage 2 warrants further investigation. Our work shows that the BC can efficiently size-classify and collect bioaerosols without re-aerosolization and effectively maintain the viability of collected microorganisms.

17.
Pediatr Pulmonol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742254

RESUMO

With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.

18.
Chemphyschem ; : e202400281, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686913

RESUMO

The correct characterization and identification of different kinds of proteins is crucial for the survival and development of living organisms, and proteomics research promotes the analysis and understanding of future genome functions. Nanopore technique has been proved to accurately identify individual nucleotides. However, accurate and rapid protein sequencing is difficult due to the variability of protein structures that contains more than 20 amino acids, and it remains very challenging especially for uncharged peptides as they can not be electrophoretically driven through the nanopore. Graphene nanopores have the advantages of high accuracy, sensitivity and low cost in identifying protein phosphorylation modifications. Here, by using all-atom molecular dynamics simulations, charged graphene nanopores are employed to electroosmotically capture and sense uncharged peptides. By further mimicking AFM manipulation of single molecules, it is also found that the uncharged peptides and their phosphorylated states could also be differentiated by both the ionic current and pulling force signals during their pulling processes through the nanopore with a slow and constant velocity. The results shows ability of using nanopores to detect and discriminate single amino acid and its phosphorylation, which is essential for the future low-cost and high-throughput sequencing of protein residues and their post-translational modifications.

19.
J Food Sci ; 89(6): 3603-3617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638071

RESUMO

In the study, papain was used to hydrolyze tilapia (Oreochromis mossambicus) skin to obtain a tilapia skin hydrolysate (TSH) with dual angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. The resulting TSH was sequentially fractionated by ultrafiltration, size exclusion separation chromatography, and reverse-phase high-performance liquid chromatography. Its inhibitory effects on ACE and DPP-IV were determined by commercial reagent kits. Two peptides purified from TSH were identified as Gly-Pro-Leu-Gly-Ala-Leu (GPLGAL) and Lys-Pro-Ala-Gly-Asn (KPAGN) by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Inhibitory concentration (IC50) of GPLGAL on ACE and DPP-IV were 117.20 ± 1.69 and 187.10 ± 2.75 µM, respectively. IC50 of KPAGN on ACE and DPP-IV were 137.40 ± 2.33 and 259.20 ± 2.85 µM, respectively. The molecular simulation demonstrated that the binding affinities of GPLGAL to ACE and DPP-IV proteins were -8.5 and -7.4 kcal/mol, respectively, whereas those of KPAGN to ACE and DPP-IV proteins were -7.9 and -6.7 kcal/mol, respectively. GPLGAL interacted with 21 amino acid residues of the ACE active site, whereas KPAGN engaged with 19 amino acid residues. Additionally, GPLGAL interacted with 10 amino acid residues of the DPP-IV active site, whereas KPAGN engaged with 13 amino acid residues. The two peptides predominantly occupied the active sites of ACE (His513, Tyr523, and Ala354) and DPP-IV (Tyr662 and Arg125) through hydrogen bonding. This leads to the deactivation of ACE and DPP-IV. PRACTICAL APPLICATION: Accelerate tilapia skin development and high-value utilization; provide foundation for preparing the peptides with dual ACE and DPP-IV inhibiting activity.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A , Pele , Tilápia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Dipeptidil Peptidase 4/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Pele/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Hidrólise , Cromatografia Líquida de Alta Pressão/métodos
20.
Curr Med Imaging ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38639284

RESUMO

BACKGROUND AND OBJECTIVE: The incidence of stroke is rising, and it is the second major cause of mortality and the third leading cause of disability around the globe. The goal of this study was to rapidly and accurately identify carotid plaques and automatically quantify plaque burden using our automated tracking and segmentation US-video system. METHODS: We collected 88 common carotid artery transection videos (11048 frames) with a history of atherosclerosis or risk factors for atherosclerosis, which were randomly divided into training, test, and validation sets using a 6:3:1 ratio. We first trained different segmentation models to segment the carotid intima and adventitia, and calculate the maximum plaque burden automatically. Finally, we statistically analyzed the plaque burden calculated automatically by the best model and the results of manual labeling by senior sonographers. RESULTS: Of the three Artificial Intelligence (AI) models, the Robust Video Matting (RVM) segmentation model's carotid intima and adventitia Dice Coefficients (DC) were the highest, reaching 0.93 and 0.95, respectively. Moreover, the RVM model has shown the strongest correlation coefficient (0.61±0.28) with senior sonographers, and the diagnostic effectiveness between the RVM model and experts was comparable with paired-t test and Bland-Altman analysis [P= 0.632 and ICC 0.01 (95% CI: -0.24~0.27), respectively]. CONCLUSION: Our findings have indicated that the RVM model can be used in ultrasound carotid video. The RVM model can automatically segment and quantify atherosclerotic plaque burden at the same diagnostic level as senior sonographers. The application of AI to carotid videos offers more precise and effective methods to evaluate carotid atherosclerosis in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...