Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Med Image Anal ; 97: 103280, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39096845

RESUMO

Medical image segmentation is crucial for healthcare, yet convolution-based methods like U-Net face limitations in modeling long-range dependencies. To address this, Transformers designed for sequence-to-sequence predictions have been integrated into medical image segmentation. However, a comprehensive understanding of Transformers' self-attention in U-Net components is lacking. TransUNet, first introduced in 2021, is widely recognized as one of the first models to integrate Transformer into medical image analysis. In this study, we present the versatile framework of TransUNet that encapsulates Transformers' self-attention into two key modules: (1) a Transformer encoder tokenizing image patches from a convolution neural network (CNN) feature map, facilitating global context extraction, and (2) a Transformer decoder refining candidate regions through cross-attention between proposals and U-Net features. These modules can be flexibly inserted into the U-Net backbone, resulting in three configurations: Encoder-only, Decoder-only, and Encoder+Decoder. TransUNet provides a library encompassing both 2D and 3D implementations, enabling users to easily tailor the chosen architecture. Our findings highlight the encoder's efficacy in modeling interactions among multiple abdominal organs and the decoder's strength in handling small targets like tumors. It excels in diverse medical applications, such as multi-organ segmentation, pancreatic tumor segmentation, and hepatic vessel segmentation. Notably, our TransUNet achieves a significant average Dice improvement of 1.06% and 4.30% for multi-organ segmentation and pancreatic tumor segmentation, respectively, when compared to the highly competitive nn-UNet, and surpasses the top-1 solution in the BrasTS2021 challenge. 2D/3D Code and models are available at https://github.com/Beckschen/TransUNet and https://github.com/Beckschen/TransUNet-3D, respectively.

2.
Med Image Anal ; 82: 102642, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223682

RESUMO

Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-up. However, oncologists' delineating all abdominal organs from 3D volumes is time-consuming and very expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset (WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards, we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve as the baseline for future research and clinical application development.


Assuntos
Benchmarking , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Abdome , Processamento de Imagem Assistida por Computador/métodos
3.
Med Image Anal ; 80: 102517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732106

RESUMO

Despite that Convolutional Neural Networks (CNNs) have achieved promising performance in many medical image segmentation tasks, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. Semi-supervised learning has shown the potential to alleviate this challenge by learning from a large set of unlabeled images and limited labeled samples. In this work, we present a simple yet efficient consistency regularization approach for semi-supervised medical image segmentation, called Uncertainty Rectified Pyramid Consistency (URPC). Inspired by the pyramid feature network, we chose a pyramid-prediction network that obtains a set of segmentation predictions at different scales. For semi-supervised learning, URPC learns from unlabeled data by minimizing the discrepancy between each of the pyramid predictions and their average. We further present multi-scale uncertainty rectification to boost the pyramid consistency regularization, where the rectification seeks to temper the consistency loss at outlier pixels that may have substantially different predictions than the average, potentially due to upsampling errors or lack of enough labeled data. Experiments on two public datasets and an in-house clinical dataset showed that: 1) URPC can achieve large performance improvement by utilizing unlabeled data and 2) Compared with five existing semi-supervised methods, URPC achieved better or comparable results with a simpler pipeline. Furthermore, we build a semi-supervised medical image segmentation codebase to boost research on this topic: https://github.com/HiLab-git/SSL4MIS.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Humanos , Processamento de Imagem Assistida por Computador/métodos , Incerteza
4.
Med Image Anal ; 75: 102287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731775

RESUMO

Automatic and accurate lung nodule detection from 3D Computed Tomography (CT) scans plays a vital role in efficient lung cancer screening. Despite the state-of-the-art performance obtained by recent anchor-based detectors using Convolutional Neural Networks (CNNs) for this task, they require predetermined anchor parameters such as the size, number, and aspect ratio of anchors, and have limited robustness when dealing with lung nodules with a massive variety of sizes. To overcome these problems, we propose a 3D sphere representation-based center-points matching detection network (SCPM-Net) that is anchor-free and automatically predicts the position, radius, and offset of nodules without manual design of nodule/anchor parameters. The SCPM-Net consists of two novel components: sphere representation and center points matching. First, to match the nodule annotation in clinical practice, we replace the commonly used bounding box with our proposed bounding sphere to represent nodules with the centroid, radius, and local offset in 3D space. A compatible sphere-based intersection over-union loss function is introduced to train the lung nodule detection network stably and efficiently. Second, we empower the network anchor-free by designing a positive center-points selection and matching (CPM) process, which naturally discards pre-determined anchor boxes. An online hard example mining and re-focal loss subsequently enable the CPM process to be more robust, resulting in more accurate point assignment and mitigation of class imbalance. In addition, to better capture spatial information and 3D context for the detection, we propose to fuse multi-level spatial coordinate maps with the feature extractor and combine them with 3D squeeze-and-excitation attention modules. Experimental results on the LUNA16 dataset showed that our proposed SCPM-Net framework achieves superior performance compared with existing anchor-based and anchor-free methods for lung nodule detection with the average sensitivity at 7 predefined FPs/scan of 89.2%. Moreover, our sphere representation is verified to achieve higher detection accuracy than the traditional bounding box representation of lung nodules. Code is available at: https://github.com/HiLab-git/SCPM-Net.


Assuntos
Neoplasias Pulmonares , Detecção Precoce de Câncer , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
5.
Transl Lung Cancer Res ; 10(6): 2452-2474, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34295654

RESUMO

BACKGROUND: Conventional analysis of single-plex chromogenic immunohistochemistry (IHC) focused on quantitative but spatial analysis. How immune checkpoints localization related to non-small cell lung cancer (NSCLC) prognosis remained unclear. METHODS: Here, we analyzed ten immune checkpoints on 1,859 tumor microarrays (TMAs) from 121 NSCLC patients and recruited an external cohort of 30 NSCLC patients with 214 whole-slide IHC. EfficientUnet was applied to segment tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs), while ResNet was performed to extract prognostic features from IHC images. RESULTS: The features of galectin-9, OX40, OX40L, KIR2D, and KIR3D played an un-negatable contribution to overall survival (OS) and relapse-free survival (RFS) in the internal cohort, validated in public databases (GEPIA, HPA, and STRING). The IC-Score and Res-Score were two predictive models established by EfficientUnet and ResNet. Based on the IC-Score, Res-Score, and clinical features, the integrated score presented the highest AUC for OS and RFS, which could achieve 0.9 and 0.85 in the internal testing cohort. The robustness of Res-Score was validated in the external cohort (AUC: 0.80-0.87 for OS, and 0.83-0.94 for RFS). Additionally, the neutrophil-to-lymphocyte ratio (NLR) combined with the PD-1/PD-L1 signature established by EfficientUnet can be a predictor for RFS in the external cohort. CONCLUSIONS: Overall, we established a reliable model to risk-stratify relapse and death in NSCLC with a generalization ability, which provided a convenient approach to spatial analysis of single-plex chromogenic IHC.

6.
IEEE J Biomed Health Inform ; 24(9): 2599-2608, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32054593

RESUMO

Extranodal natural killer/T cell lymphoma (ENKL), nasal type is a kind of rare disease with a low survival rate that primarily affects Asian and South American populations. Segmentation of ENKL lesions is crucial for clinical decision support and treatment planning. This paper is the first study on computer-aided diagnosis systems for the ENKL segmentation problem. We propose an automatic, coarse-to-fine approach for ENKL segmentation using adversarial networks. In the coarse stage, we extract the region of interest bounding the lesions utilizing a segmentation neural network. In the fine stage, we use an adversarial segmentation network and further introduce a multi-scale L1 loss function to drive the network to learn both global and local features. The generator and discriminator are alternately trained by backpropagation in an adversarial fashion in a min-max game. Furthermore, we present the first exploration of zone-based uncertainty estimates based on Monte Carlo dropout technique in the context of deep networks for medical image segmentation. Specifically, we propose the uncertainty criteria based on the lesion and the background, and then linearly normalize them to a specific interval. This is not only the crucial criterion for evaluating the superiority of the algorithm, but also permits subsequent optimization by engineers and revision by clinicians after quantitatively understanding the main source of uncertainty from the background or the lesion zone. Experimental results demonstrate that the proposed method is more effective and lesion-zone stable than state-of-the-art deep-learning based segmentation model.


Assuntos
Linfoma de Células T , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Incerteza
7.
Front Neurorobot ; 13: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316366

RESUMO

An effective way to achieve intelligence is to simulate various intelligent behaviors in the human brain. In recent years, bio-inspired learning methods have emerged, and they are different from the classical mathematical programming principle. From the perspective of brain inspiration, reinforcement learning has gained additional interest in solving decision-making tasks as increasing neuroscientific research demonstrates that significant links exist between reinforcement learning and specific neural substrates. Because of the tremendous research that focuses on human brains and reinforcement learning, scientists have investigated how robots can autonomously tackle complex tasks in the form of making a self-driving agent control in a human-like way. In this study, we propose an end-to-end architecture using novel deep-Q-network architecture in conjunction with a recurrence to resolve the problem in the field of simulated self-driving. The main contribution of this study is that we trained the driving agent using a brain-inspired trial-and-error technique, which was in line with the real world situation. Besides, there are three innovations in the proposed learning network: raw screen outputs are the only information which the driving agent can rely on, a weighted layer that enhances the differences of the lengthy episode, and a modified replay mechanism that overcomes the problem of sparsity and accelerates learning. The proposed network was trained and tested under a third-party OpenAI Gym environment. After training for several episodes, the resulting driving agent performed advanced behaviors in the given scene. We hope that in the future, the proposed brain-inspired learning system would inspire practicable self-driving control solutions.

8.
Front Neurosci ; 13: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809114

RESUMO

A neuromorphic vision sensors is a novel passive sensing modality and frameless sensors with several advantages over conventional cameras. Frame-based cameras have an average frame-rate of 30 fps, causing motion blur when capturing fast motion, e.g., hand gesture. Rather than wastefully sending entire images at a fixed frame rate, neuromorphic vision sensors only transmit the local pixel-level changes induced by the movement in a scene when they occur. This leads to advantageous characteristics, including low energy consumption, high dynamic range, a sparse event stream and low response latency. In this study, a novel representation learning method was proposed: Fixed Length Gists Representation (FLGR) learning for event-based gesture recognition. Previous methods accumulate events into video frames in a time duration (e.g., 30 ms) to make the accumulated image-level representation. However, the accumulated-frame-based representation waives the friendly event-driven paradigm of neuromorphic vision sensor. New representation are urgently needed to fill the gap in non-accumulated-frame-based representation and exploit the further capabilities of neuromorphic vision. The proposed FLGR is a sequence learned from mixture density autoencoder and preserves the nature of event-based data better. FLGR has a data format of fixed length, and it is easy to feed to sequence classifier. Moreover, an RNN-HMM hybrid was proposed to address the continuous gesture recognition problem. Recurrent neural network (RNN) was applied for FLGR sequence classification while hidden Markov model (HMM) is employed for localizing the candidate gesture and improving the result in a continuous sequence. A neuromorphic continuous hand gestures dataset (Neuro ConGD Dataset) was developed with 17 hand gestures classes for the community of the neuromorphic research. Hopefully, FLGR can inspire the study on the event-based highly efficient, high-speed, and high-dynamic-range sequence classification tasks.

9.
Zhonghua Nan Ke Xue ; 22(6): 511-515, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-28963839

RESUMO

OBJECTIVE: To evaluate the effect of ejaculatory duct dilation combined with seminal vesicle clysis in the treatment of refractory hematospermia. METHODS: Using ureteroscopy, we treated 32 patients with refractory hematospermia by transurethral dilation of the ejaculatory duct combined with clysis of the seminal vesicle with diluent gentamicin. RESULTS: The operation was successfully accomplished in 31 cases, with the mean operation time of 32 (26-47) minutes. The patients were followed up for 6-39 (mean 23.6) months. No complications, such as urinary incontinence and retrograde ejaculation, were found after operation. Hematospermia completely disappeared in 27 cases, was relieved in 1, and recurred in 3 after 3 months postoperatively. Those with erectile dysfunction or mental anxiety symptoms showed significantly decreased scores of IIEF-Erectile Function (IIEF-EF) and Self-Rating Anxiety Scale (SAS). CONCLUSIONS: Ejaculatory duct dilation combined with seminal vesicle clysis under the ureteroscope, with its the advantages of high effectiveness and safety, minimal invasiveness, few complications, and easy operation, deserves general clinical application in the treatment of refractory hematospermia.


Assuntos
Ductos Ejaculatórios/cirurgia , Hemospermia/cirurgia , Glândulas Seminais/cirurgia , Dilatação , Doenças dos Genitais Masculinos , Humanos , Masculino , Período Pós-Operatório , Recidiva , Ureteroscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...