Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39008393

RESUMO

Many 3D mesh processing tasks revolve around generating and manipulating curves on surface meshes. While it is intuitive to explicitly model these curves using mesh edges or parametric curves in the ambient space, these methods often suffer from numerical instability or inaccuracy due to the projection operation. Another natural strategy is to adapt spline based tools, these methods are quite fast but are hard to be extended to more versatile constraints and need heavy manual interactions. In this paper, we present an efficient and versatile approach to curve design based on an implicit representation known as the level set. While previous works have explored the use of the level set to generate curves with minimal length, they typically have limitations in accommodating additional conditions for rich and robust control. To address these challenges, we formulate curve editing with constraints like smoothness, interpolation, tangent control, etc., via a level set based variational problem by constraining the values or derivatives of the level set function. However, the widely used gradient flow strategy converges very slowly for this complicated variational problem compared to the classical geodesic one. Thus, we propose to solve it via Newton's method enhanced by local Hessian correction and a trust-region strategy. As a result, our method not only enables versatile control, but also excels in terms of performance due to nearly quadratic convergence and almost linear complexity in each iteration via narrow band acceleration. In practice, these advantages effectively benefit various applications, such as interactive curve manipulation, boundary smoothing for surface segmentation and path planning with obstacles as demonstrated.

2.
ArXiv ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38979488

RESUMO

In systems and network neuroscience, many common practices in brain connectomic analysis are often not properly scrutinized. One such practice is mapping a predetermined set of sub-circuits, like functional networks (FNs), onto subjects' functional connectomes (FCs) without adequately assessing the information-theoretic appropriateness of the partition. Another practice that goes unchallenged is thresholding weighted FCs to remove spurious connections without justifying the chosen threshold. This paper leverages recent theoretical advances in Stochastic Block Models (SBMs) to formally define and quantify the information-theoretic fitness (e.g., prominence) of a predetermined set of FNs when mapped to individual FCs under different fMRI task conditions. Our framework allows for evaluating any combination of FC granularity, FN partition, and thresholding strategy, thereby optimizing these choices to preserve important topological features of the human brain connectomes. Our results pave the way for the proper use of predetermined FNs and thresholding methods and provide insights for future research in individualized parcellations.

3.
J Fish Dis ; : e13996, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973170

RESUMO

Displaying antigens on yeast surface as an oral vaccine has been widely explored, while its potential as an immersion vaccine has not been evaluated. Here, an immersion vaccine was prepared by displaying ORF25 of Cyprinid herpesvirus 2 (CyHV-2) on the surface of Saccharomyces cerevisiae. Carassius auratus gibelio was immersion immunized by 2 × 107 CFU/mL yeast for 2 h, and reinforce the immunity using the same method 14 days after the first immunization. The results showed that ORF25 specific antibody in immunized crucian carp serum was detected at a high level, and the mRNA expression level of IgM, IgT, IL-1ß, and IFN-1 in vaccinated head-kidney and spleen tissues were higher than the control group, indicating that innate and adaptive immunity were induced. Moreover, the immersion vaccination provided effective protection for fish against CyHV-2, leading to a relative percent survival of 50.2%. Meanwhile, immersion vaccination restrained virus replication and histological damage in CyHV-2 infected crucian carp. Our data suggested that immersion immunization of S. cerevisiae-displayed ORF25 could be served as a candidate vaccine to prevent CyHV-2 infection.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38861323

RESUMO

PURPOSE: To investigate the factors affecting footplate position and its influence on vault characteristics following implantable collamer lens (ICL) implantation. SETTING: Hunan Provincial People's Hospital, Changsha, China. DESIGN: Retrospective case series. METHODS: This study included 124 patients (124 eyes). Ultrasound biomicroscopy (UBM) was performed to assess the iris and ciliary body morphologies and observe the footplate position. Using multiple linear regression, the relationship between various ocular and ICL parameters and the vault as well as the factors affecting the footplate distance (FD) were analyzed. Based on the FD, three groups were formed: group 1 (<500 µm), group 2 (500-1000 µm), and group 3 (>1000 µm). The distribution of the vault range after surgery was observed for the three groups. RESULTS: Ciliary sulcus angle and FD significantly impacted the vault (adjusted R2=0.190, F=6.763, P<0.001), with FD being the most important factor influencing the vault (Beta=-0.383, P<0.001). Postoperative UBM revealed that the footplate was located at different positions in the posterior chamber, with the majority (52%) being located on the ciliary body. The average size of the four footplate orientations was 0.88±0.24 mm. Multiple linear regression analysis revealed that ciliary body thickness (CBT), iris curvature (IC), and ICL iris contact length (IRCL) significantly influenced the FD (adjusted R2=0.373, F=11.432, P<0.001). The vault range differed significantly among the three groups (X2=32.33, P<0.001). CONCLUSIONS: Different postoperative ICL footplate positions significantly affect the vault. CBT, IC, and IRCL can alter the position of the footplate from the expected position. This study provides reference for ICL size selection and vault prediction.

5.
AMIA Jt Summits Transl Sci Proc ; 2024: 449-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827100

RESUMO

Alzheimer's disease is a progressive neurodegenerative disease with many identifying biomarkers for diagnosis. However, whole-brain phenomena, particularly in functional MRI modalities, are not fully understood nor characterized. Here we employ the novel application of topological data analysis (TDA)-based methods of persistent homology to functional brain networks from ADNI-3 cohort to perform a subtyping experiment using unsupervised clustering techniques. We then investigate variations in QT-PAD challenge features across the identified clusters. Using a Wasserstein distance kernel with a variety of clustering algorithms, we found that the 0th-homology Wasserstein distance kernel and spectral clustering yielded clusters with significant differences in whole brain and medial temporal lobe (MTL) volume, thus demonstrating an intrinsic link between whole brain functional topology and brain morphometric structure. These findings demonstrate the importance of MTL in functional connectivity and the efficacy of using TDA-based machine learning methods in network neuroscience and neurodegenerative disease subtyping.

6.
J Virol ; : e0069724, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.

7.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930536

RESUMO

Licorice (Glycyrrhiza glabra) is a plant of the genus Glycyrrhiza in the family Fabaceae/Leguminosae and is a renowned natural herb with a long history of medicinal use dating back to ancient times. Glycyrrhizin (GLY), the main active component of licorice, serves as a widely utilized therapeutic agent in clinical practice. GLY exhibits diverse medicinal properties, including anti-inflammatory, antibacterial, antiviral, antitumor, immunomodulatory, intestinal environment maintenance, and liver protection effects. However, current research primarily emphasizes GLY's antiviral activity, while providing limited insight into its antibacterial properties. GLY demonstrates a broad spectrum of antibacterial activity via inhibiting the growth of bacteria by targeting bacterial enzymes, impacting cell membrane formation, and altering membrane permeability. Moreover, GLY can also bolster host immunity by activating pertinent immune pathways, thereby enhancing pathogen clearance. This paper reviews GLY's inhibitory mechanisms against various pathogenic bacteria-induced pathological changes, its role as a high-mobility group box 1 inhibitor in immune regulation, and its efficacy in combating diseases caused by pathogenic bacteria. Furthermore, combining GLY with other antibiotics reduces the minimum inhibitory concentration, potentially aiding in the clinical development of combination therapies against drug-resistant bacteria. Sources of information were searched using PubMed, Web of Science, Science Direct, and GreenMedical for the keywords "licorice", "Glycyrrhizin", "antibacterial", "anti-inflammatory", "HMGB1", and combinations thereof, mainly from articles published from 1979 to 2024, with no language restrictions. Screening was carried out by one author and supplemented by others. Papers with experimental flaws in their experimental design and papers that did not meet expectations (antifungal papers, etc.) were excluded.

8.
Microorganisms ; 12(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930590

RESUMO

Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and mitochondrial condition of Litopenaeus vannamei were identified using transmission electron microscopy (TEM), real-time qPCR, an enzyme assay, and flow cytometry. The results showed that EHP spores, approximately 1 µm in size, were located on the cytoplasm of the hepatopancreas. The number of mitochondria increased significantly, and mitochondria morphology showed a condensed state in the high-concentration EHP-infected shrimp by TEM observation. In addition, there were some changes in mitochondrial potential, but apoptosis was not significantly different in the infected shrimp. The qPCR results showed that the gene expression levels of hexokinase and pyruvate kinase related to energy metabolism were both upregulated in the diseased L. vannamei. Enzymatic activity showed hexokinase and lactate dehydrogenase were significantly increased in the shrimp infected with EHP, indicating EHP infection can increase the glycolysis process and decrease the oxidative phosphorylation process of L. vannamei. Previous transcriptomic data analysis results also support this conclusion.

9.
Front Immunol ; 15: 1401626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868779

RESUMO

Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.


Assuntos
Proteínas de Peixes , Macrófagos , Necroptose , Perciformes , Animais , Perciformes/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Necroptose/imunologia , Filogenia , Ativação de Macrófagos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Aciltransferases/genética , Aciltransferases/imunologia , Pseudomonas/fisiologia , Citocinas/metabolismo
10.
Comput Biol Med ; 177: 108666, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820773

RESUMO

BACKGROUND: α-1,3-mannosyltransferase (ALG3) holds significance as a key member within the mannosyltransferase family. Nevertheless, the exact function of ALG3 in cancer remains ambiguous. Consequently, the current research aimed to examine the function and potential mechanisms of ALG3 in various types of cancer. METHODS: Deep pan-cancer analyses were conducted to investigate the expression patterns, prognostic value, genetic variations, single-cell omics, immunology, and drug responses associated with ALG3. Subsequently, in vitro experiments were executed to ascertain the biological role of ALG3 in breast cancer. Moreover, the link between ALG3 and CD8+ T cells was verified using immunofluorescence. Lastly, the association between ALG3 and chemokines was assessed using qRT-PCR and ELISA. RESULTS: Deep pan-cancer analysis demonstrated a heightened expression of ALG3 in the majority of tumors based on multi-omics evidence. ALG3 emerges as a diagnostic and prognostic biomarker across diverse cancer types. In addition, ALG3 participates in regulating the tumor immune microenvironment. Elevated levels of ALG3 were closely linked to the infiltration of bone marrow-derived suppressor cells (MDSC) and CD8+ T cells. According to in vitro experiments, ALG3 promotes proliferation and migration of breast cancer cells. Moreover, ALG3 inhibited CD8+ T cell infiltration by suppressing chemokine secretion. Finally, the inhibition of ALG3 enhanced the responsiveness of breast cancer cells to 5-fluorouracil treatment. CONCLUSION: ALG3 shows potential as both a prognostic indicator and immune infiltration biomarker across various types of cancer. Inhibition of ALG3 may represent a promising therapeutic strategy for tumor treatment.


Assuntos
Linfócitos T CD8-Positivos , Fluoruracila , Humanos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Fluoruracila/farmacologia , Quimiocinas/metabolismo , Quimiocinas/genética , Feminino , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Multiômica
11.
Biomolecules ; 14(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785979

RESUMO

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimologia , Neoplasias/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Ubiquitinação , Inflamação/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
12.
Mol Cancer ; 23(1): 109, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769556

RESUMO

Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.


Assuntos
Neoplasias da Mama , Histona Desmetilases , Terapia de Alvo Molecular , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Biomarcadores Tumorais
13.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766268

RESUMO

Recent advances in cytometry technology have enabled high-throughput data collection with multiple single-cell protein expression measurements. The significant biological and technical variance between samples in cytometry has long posed a formidable challenge during the gating process, especially for the initial gates which deal with unpredictable events, such as debris and technical artifacts. Even with the same experimental machine and protocol, the target population, as well as the cell population that needs to be excluded, may vary across different measurements. To address this challenge and mitigate the labor-intensive manual gating process, we propose a deep learning framework UNITO to rigorously identify the hierarchical cytometric subpopulations. The UNITO framework transformed a cell-level classification task into an image-based semantic segmentation problem. For reproducibility purposes, the framework was applied to three independent cohorts and successfully detected initial gates that were required to identify single cellular events as well as subsequent cell gates. We validated the UNITO framework by comparing its results with previous automated methods and the consensus of at least four experienced immunologists. UNITO outperformed existing automated methods and differed from human consensus by no more than each individual human. Most critically, UNITO framework functions as a fully automated pipeline after training and does not require human hints or prior knowledge. Unlike existing multi-channel classification or clustering pipelines, UNITO can reproduce a similar contour compared to manual gating for each intermediate gating to achieve better interpretability and provide post hoc visual inspection. Beyond acting as a pioneering framework that uses image segmentation to do auto-gating, UNITO gives a fast and interpretable way to assign the cell subtype membership, and the speed of UNITO will not be impacted by the number of cells from each sample. The pre-gating and gating inference takes approximately 2 minutes for each sample using our pre-defined 9 gates system, and it can also adapt to any sequential prediction with different configurations.

14.
Eur J Pharm Biopharm ; 200: 114327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759900

RESUMO

P-glycoprotein (P-gp) overexpressed mutidrug resistance (MDR) is currently a key factor limiting the effectiveness of breast cancer chemotherapy. Systemic administration based on P-gp-associated mechanism leads to severe toxic side effects. Here, we designed a T7 peptide-modified mixed liposome (T7-MLP@DTX/SchB) that, by active targeting co-delivering chemotherapeutic agents and P-gp inhibitors, harnessed synergistic effects to improve the treatment of MDR breast cancer. This study established drug-resistant cell models and animal models. Subsequently, comprehensive evaluations involving cell uptake, cell apoptosis, cellular toxicity assays, in vivo tumor-targeting capability, and anti-tumor activity assays were conducted to assess the drug resistance reversal effects of T7-MLP@DTX/SchB. Additionally, a systematic assessment of the biosafety profile of T7-MLP@DTX/SchB was executed, including blood profiles, biochemical markers, and histopathological examination. It was found that this co-delivery strategy successfully exerted the synergistic effects, since there was a significant tumor growth inhibitory effect on multidrug-resistant breast cancer. Targeted modification with T7 peptide enhanced the therapeutic efficacy remarkably, while vastly ameliorating the biocompatibility compared to free drugs. The intriguing results supported the promising potential use of T7-MLP@DTX/SchB in overcoming MDR breast cancer treatment.


Assuntos
Neoplasias da Mama , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Lipossomos , Camundongos Endogâmicos BALB C , Feminino , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Camundongos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Células MCF-7 , Fragmentos de Peptídeos/administração & dosagem , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Colágeno Tipo IV
15.
NPJ Biofilms Microbiomes ; 10(1): 40, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605016

RESUMO

Increasing evidence infers that some complex diseases are attributed to co-infection with multiple pathogens, such as shrimp white feces syndrome (WFS); however, there is a lack of experimental evidence to validate such causal link. This deficiency further impedes rational design of probiotics to elicit desired benefits to shrimp WFS resistance. Herein, we validated the causal roles of Vibrio fluvialis, V. coralliilyticus and V. tubiashii (in a ratio of 7:2:1) in shrimp WFS etiology, which fully satisfied Koch's postulates. Correspondingly, we precisely designed four antagonistic strains: Ruegeria lacuscaerulensis, Nioella nitratireducens, Bacillus subtilis and Streptomyces euryhalinus in a ratio of 4:3:2:1, which efficiently guarded against WFS. Dietary supplementation of the probiotics stimulated beneficial gut populations, streptomycin, short chain fatty acids, taurine metabolism potentials, network stability, tight junction, and host selection, while reducing turnover rate and average variation degree of gut microbiota, thereby facilitating ecological and mechanical barriers against pathogens. Additionally, shrimp immune pathways, such as Fcγ R-mediated phagocytosis, Toll-like receptor and RIG-I-like receptor signaling pathways conferring immune barrier, were activated by probiotics supplementation. Collectively, we establish an updated framework for precisely validating co-infection with multiple pathogens and rationally designing antagonistic probiotics. Furthermore, our findings uncover the underlying beneficial mechanisms of designed probiotics from the probiotics-gut microbiome-host immunity axis.


Assuntos
Coinfecção , Microbioma Gastrointestinal , Probióticos , Humanos , Fezes
16.
Fish Shellfish Immunol ; 149: 109531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604479

RESUMO

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.


Assuntos
Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , Nocardia , Perforina , Filogenia , Animais , Bass/imunologia , Bass/genética , Doenças dos Peixes/imunologia , Perforina/genética , Perforina/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
17.
Bioorg Chem ; 147: 107400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688196

RESUMO

Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular
18.
Curr Biol ; 34(7): R275-R278, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593770

RESUMO

Collective cell migration is a key cellular process in development and disease. A new study reports that ER stress is induced during collective cell migration and an intrinsic mechanism prevents migratory cells from over-reacting to ER stress.


Assuntos
Movimento Celular
19.
Cell Mol Biol Lett ; 29(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443798

RESUMO

RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.


Assuntos
Descoberta de Drogas , Epigênese Genética , Homeostase , RNA , RNA Mensageiro
20.
Microorganisms ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543573

RESUMO

Glugea plecoglossi is an obligate intracellular microsporidium, which poses a significant threat to ayu (Plecoglossus altivelis). In vitro cultivation models are invaluable tools for investigating intracellular microorganisms, including G. plecoglossil. In this study, we attempted to in vitro cultivate G. plecoglossi using primary cultures derived from ayu monocytes/macrophages (MO/MΦ), a murine-derived macrophage cell line RAW264.7, and the epithelioma papulosum cyprini (EPC) cell line. The results demonstrated that MO/MΦ infected with spores exhibited a pronounced immune response which was presented by rapidly high expression levels of inflammatory cytokines, such as PaIL-1ß, PaTNF-α, PaIL-10, and PaTGF-ß, and detached within 96 h post-infection (hpi). Infected RAW264.7 cells remained capable of stable passage yet exhibited cellular deformation with a decrease in intracellular spores occurring around 8 days post-infection (dpi). In contrast, EPC cells promised a substantial parasite population, and the cytokine expression levels returned to normal by 8 dpi. In addition, G. plecoglossi spores recovered from EPC cells could infect young ayu, suggesting that EPC cells might be used as an in vitro cultivation system for G. plecoglossi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...