Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 2): 159214, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208735

RESUMO

Dust and black carbon (BC) can darken snow and ice surface and play pivotal roles in glacier mass loss. Thus, a quantitative assessment of their contributions to glacier summer melting is critical. During the summer of 2018, surface snow and ice were sampled, and the albedo and mass balance were continuously measured in the ablation zone of Laohugou Glacier No. 12 in the western Qilian Mountains. The physical properties of dust and BC were measured in the laboratory, and their impacts on glacier surface albedo reduction and melting were simulated. The results indicate that the ice surface in the ablation zone was enriched with substantial amounts of particles, and the average particle concentrations of these samples were hundreds of times higher than those of fresh snow. The BC mass absorption cross-sections (MACs) ranged from 3.1 m2 g-1 at 550 nm for dirty ice to 4.6 m2 g-1 for fresh snow, largely owing to meltwater percolation and particle collapse. The spectral variations in dust MACs were significantly different in the visible light bands and near-infrared bands from those in the other areas. Moreover, the two-layer surface energy and mass balance model with the new albedo parameterization formula was validated and agreed well with the experimental measurements of spectral albedo, broadband albedo, and mass balance. BC and dust combined resulted in 26.7 % and 54.4 % of the total mass loss on the cleaner and dirtier (particle enriched) surfaces in the ablation zone, respectively, compared to particle-free surfaces, and although both impurities played vital roles, dust was the more prominent factor in accelerating glacier melting on the northeastern Tibetan Plateau. This study emphasizes the importance of dust in cryosphere changes where Tibetan glaciers are strongly affected by Asian dust deposition.


Assuntos
Poeira , Camada de Gelo , Poeira/análise , Tibet , Monitoramento Ambiental/métodos , Neve , Fuligem/análise
2.
Sci Total Environ ; 789: 147746, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082201

RESUMO

In snow and ice, light-absorbing particles (LAPs), such as black carbon (BC) and dust, accelerate the melting of Third Pole glaciers (TPGs). In this study, we revaluated LAP concentrations in the snow pits of TPGs (SP-TPGs), measured LAP mass absorption cross-sections (MACs), and simulated their effects on glacier darkening and melting based on the Spectral Albedo Model for Dirty Snow and a surface energy and mass balance model. The results indicated that because of their short distances to emission sources, the average BC concentrations measured in snow pits in the periphery of Third Pole were much higher than those measured in the inland Tibetan Plateau, and the average dust concentrations generally decreased from north to south. The average MACs of BC in the SP-TPGs varied from 3.1 to 7.7 m2 g-1 at 550 nm, most of the average spectral values were comparable in the visible and near-infrared bands to those calculated by Mie theory, except those in Urumqi Glacier No. 1 (UR), Syek Zapadniy Glacier (SZ), and Laohugou Glacier No.12 (LH), while the average spectral MACs of dust in the SP-TPGs were considerably smaller in magnitude than most of the variations measured in other regions. Compared with the pure snow surfaces, BC and dust played comparable roles in reducing albedo in UR, SZ, LH, and Renlongba Glacier, whereas BC was the most prominent absorber in the other glaciers. The combined effect of BC and dust accelerated melting by 30.4-345.9 mm w.e. (19.7-45.3% of the total mass balance) through surface albedo darkening (0.06-0.17) and increased radiation absorption (25.8-65.7 W m-2) within one month of the ablation season. This study provides a new data set of LAP concentrations and MACs and helps to clarify the roles of these factors in the cryospheric environment of the Third Pole.


Assuntos
Poeira , Camada de Gelo , Carbono/análise , Poeira/análise , Monitoramento Ambiental , Neve , Fuligem/análise
3.
Environ Sci Pollut Res Int ; 28(37): 51530-51543, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33987720

RESUMO

In this work, samples of surface snow, surface ice, snow pit and meltwater from the Laohugou Glacier No. 12 on the northern edge of Tibetan Plateau (TP) were collected during the summer of 2015. The average concentration of Hg in surface snow/ice was 22.41 ng L-1, while the percentage of dissolved mercury (HgD) was observed to be around 26%. An altitudinal magnification of Hg was not observed for surface snow; however, in contrast, a significant positive magnification of Hg with altitude was observed in the surface ice. A higher concentration of Hg corresponded with the dust layer of the snow pit. It was observed that about 42% of Hg was lost from the surface snow when the glacier was exposed to sunlight within the first 24 h indicating some Hg was emitted back to the atmosphere while some were percolated downwards. The result from the principal component analysis (PCA) showed that the sources of Hg in Laohugou Glacier No. 12 were from crustal and biomass burning. Finally, it was estimated that total export of Hg from the outlet river of Laohugou glacier No. 12 in the year 2015 was about 1439.46 g yr-1 with yield of 22.77 µg m2 yr-1. This study provides valuable insights for understanding the behavior of Hg in the glacier of the northern Tibetan Plateau.


Assuntos
Mercúrio , Neve , China , Monitoramento Ambiental , Camada de Gelo , Mercúrio/análise , Tibet
4.
Sci Total Environ ; 686: 1030-1038, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31200301

RESUMO

Black carbon (BC), which consists of the strongest light-absorbing particles (LAP) in snow/ice, has been regarded as a potential factor accelerating the melting of glaciers and snow cover over the Third Pole. During the winter and summer of 2016, snow, ice and topsoil were sampled from the Laohugou basin located on the northeastern Tibetan Plateau. Concentrations of BC in Laohugou Glacier No. 12 (LG12) and snow cover in this basin (LSC) varied broadly (21.7-2700.1 and 89.6 to 6326.2 ng g-1, respectively), indicating large spatiotemporal variability in wet, dry and post depositional conditions. Further, internally mixed BC in snow grains enhanced the albedo reduction (15.0-26.3%) more than externally mixed BC in LG12 and LSC. Dust played a more important role than BC in accelerating the melting of LG12, whereas these components played comparable roles in accelerating the melting of LSC. In total, externally mixed BC and dust reduced the albedo by 0.075-0.423, with an associated mean radiative forcing (RF) of 97.5 ±â€¯41.5 Wm-2 in LSC. This level was lower than those in the ablation zone (354.1 ±â€¯81.2 Wm-2) and accumulation zone (145.6 ±â€¯76.7 Wm-2) of LG12 because of discrepancies in LAP concentrations, solar zenith angles and incoming shortwave radiation. Furthermore, we observed that topsoil containing abundant BC was transported along the slope from the debris to the LG12 surface ice, and topsoil in this region could be lifted by strong mountain-valley winds and then deposited on snow/ice surfaces, which affected the LAP concentrations. Therefore, this study is important for understanding the role of BC and dust in the melting of snow/ice in the northeastern Tibetan Plateau.

5.
Sci Total Environ ; 607-608: 1237-1249, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28732402

RESUMO

Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau.

6.
Sci Total Environ ; 574: 889-900, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27665449

RESUMO

Melting of high-elevation glaciers can be accelerated by the deposition of light-absorbing aerosols (e.g., organic carbon, mineral dust), resulting in significant reductions of the surface albedo on glaciers. Organic carbon deposited in glaciers is of great significance to global carbon cycles, snow photochemistry, and air-snow exchange processes. In this work, various snow and ice samples were collected at high elevation sites (4300-4850masl) from Mt. Yulong on the southeastern Tibetan Plateau in 2015. These samples were analyzed for water-soluble organic carbon (DOC), total nitrogen (TN), and water-soluble inorganic ions (WSIs) to elucidate the chemical species and compositions of the glaciers in the Mt. Yulong region. Generally, glacial meltwater had the lowest DOC content (0.39mgL-1), while fresh snow had the highest (2.03mgL-1) among various types of snow and ice samples. There were obvious spatial and temporal trends of DOC and WSIs in glaciers. The DOC and TN concentrations decreased in the order of fresh snow, snow meltwater, snowpit, and surface snow, resulting from the photolysis of DOC and snow's quick-melt effects. The surface snow had low DOC and TN depletion ratios in the melt season; specifically, the ratios were -0.79 and -0.19mgL-1d-1, respectively. In the winter season, the ratios of DOC and TN were remarkably higher, with values of -0.20mgL-1d-1 and -0.08mgL-1d-1, respectively. A reduction of the DOC and TN content in glaciers was due to snow's quick melt and sublimation. Deposition of these light-absorbing impurities (LAPs) in glaciers might accelerate snowmelt and even glacial retreat.

7.
Sci Total Environ ; 493: 930-42, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25010943

RESUMO

This work discusses the temporal variation of various physicochemical species in the meltwater runoff of Laohugou Glacier No. 12 (4260 ma.s.l.) in central Asia, and their correlation with dust particles, based on a two-year field observation in summer 2012 and 2013, mainly focusing on dust concentration and size distribution, meltwater chemistry, particles SEM-EDX analysis in the meltwater, and MODIS atmospheric optical depth fields around the Qilian Mountains in central Asia. We find that, the volume-size distribution of dust particles in the meltwater is mainly composed of three parts, which includes fine aerosol particles (with diameter of 0~3.0 µm, mainly PM 2.5), atmospheric dust (with diameter of 3.0~20 µm), and local dust particles (20~100 µm), respectively. Comparison of dust particles in the snowpack and meltwater runoff indicates that, large part of dust particles in the meltwater may have originated from atmospheric dust deposition to the snow and ice on the glacier, and transported into the meltwater runoff. Moreover, temporal variation of dust and major ions (especially crustal species) is very similar with each other, showing great influence of dust particles to the chemical constituents of the glacier meltwater. SPM and TDS implied significant influences of dust to the physical characteristics of the glacier meltwater. Results showed that, accelerated glacier melting may affect physicochemical characteristics of the meltwater at an alpine basin under global warming. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm, showed great influence of regional dust transportation over western Qilian Mountains in springtime. SEM-EDX analysis shows that dust particles in the glacier meltwater contain Si-, Al-, Ca-, K-, and Fe-rich materials, such as quartz, albite, aluminate, and fly ash, similar to that deposited in snowpack. These results showed great and even currently underestimated influences of atmospheric dust deposition to glacier meltwater physicochemistry at an alpine basin in central Asia.

8.
Huan Jing Ke Xue ; 35(2): 504-12, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24812940

RESUMO

This research aimed to identify and characterize individual spherical fly ash particles extracted from surface snow at Laohugou Glacier No. 12, western Qilian Mountains, China. Characterization of the spherical particles (i. e. morphology, chemical composition and genesis) was obtained by scanning electron microscopy coupled with energy dispersive X-ray spectrometer (SEM-EDX). Spherical particles and agglomerates were identified according to their morphology in nine snow samples. Prevalent particle types in all samples were granular spherical particles, hollow spherical particles, and agglomerates. The vast majority of spherical particles in our samples had mostly smooth and glossy surfaces. Individual particle analyses of elemental composition showed that particles formed in combustion were mainly composed of silicon, aluminum and trace elements. On the basis of chemical information obtained from EDX, the fly ash particles deposited in the snow could be classified into three types, which were Si-dominant particles, Fe-dominant particles, and Ti-dominant spherical particles. Backward air mass trajectory and dispersion analysis suggested that the developed urban regions of central Asia and surrounding Yumen city contributed the primary fly ash particles from industrial combustion to the study site through the high-level atmospheric circulation.


Assuntos
Poluentes Atmosféricos/análise , Cinza de Carvão/análise , Camada de Gelo/química , Material Particulado/análise , China , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...