Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 40(16): 2872-2883, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742124

RESUMO

Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer. We conclude that systemic chemotherapy failure in some TNBC patients is caused by co-opting the LXRalpha:P-glycoprotein axis, a pathway highly targetable by therapies that are already used for prevention and treatment of other diseases.


Assuntos
Hidroxicolesteróis/metabolismo , Receptores X do Fígado/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Benzoatos/farmacologia , Benzilaminas/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Epirubicina/farmacologia , Feminino , Expressão Gênica , Humanos , Receptores X do Fígado/agonistas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
2.
Cancer Lett ; 493: 266-283, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32861706

RESUMO

Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Colestanotriol 26-Mono-Oxigenase/genética , Hidroxicolesteróis/efeitos adversos , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colestanotriol 26-Mono-Oxigenase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Receptores X do Fígado/metabolismo , Camundongos , Células Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacos
3.
Endocr Relat Cancer ; 26(7): 659-675, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048561

RESUMO

There is an urgent need for more effective strategies to treat ovarian cancer. Elevated cholesterol levels are associated with a decreased progression-free survival time (PFS) while statins are protective. 27-Hydroxycholesterol (27HC), a primary metabolite of cholesterol, has been shown to modulate the activities of the estrogen receptors (ERs) and liver x receptors (LXRs) providing a potential mechanistic link between cholesterol and ovarian cancer progression. We found that high expression of CYP27A1, the enzyme responsible for the synthesis of 27HC, was associated with decreased PFS, while high expression of CYP7B1, responsible for 27HC catabolism, was associated with increased PFS. However, 27HC decreased the cellular proliferation of various ovarian cancer cell lines in an LXR-dependent manner. Intriguingly, ID8 grafts were unable to effectively establish in CYP27A1-/- mice, indicating involvement of the host environment. Tumors from mice treated with 27HC had altered myeloid cell composition, and cells from the marrow stem cell lineage were found to be responsible for the effects in CYP27A1-/- mice. While inhibition of CYP27A1 or immune checkpoint did not significantly alter tumor size, their combination did, thereby highlighting this axis as a therapeutic target.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Neoplasias Ovarianas/genética , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Colestanotriol 26-Mono-Oxigenase/antagonistas & inibidores , Colestanotriol 26-Mono-Oxigenase/deficiência , Colesterol na Dieta/efeitos adversos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Hidroxicolesteróis/metabolismo , Camundongos , Células Supressoras Mieloides/citologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Intervalo Livre de Progressão , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...