Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(4): e2200777, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193251

RESUMO

SCOPE: Osteopontin (OPN) is a multifunctional protein naturally present in mammals' milk, associated with immune homeostasis and intestinal maturation. This study aims to investigate the protein digestion pattern and the cellular bioactivity of bovine milk OPN digesta in vitro. METHODS AND RESULTS: A modified INFOGEST static in vitro infant digestion protocol and a Caco-2/HT-29 co-culture cell model are employed to evaluate the digestion properties and the anti-inflammatory effects of OPN. OPN is resistant to gastric hydrolysis but degraded into large peptides during intestinal digestion. Its 10 kDa digesta permeate with predicted extensive bioactivities protects the co-culture cell model from the inflammation-induced dysfunction by dose-dependently recovering the expression of occludin, claudin-3, and ZO-1. Low dosage of OPN significantly decreases the production of IL-8 and IL-6, and downregulates the mRNA and protein expression of MyD88, NF-κB p65, and IκB-α, whereas a high dose evokes a mild pro-inflammatory response. Interestingly, anti-inflammatory effect of OPN digesta is stronger than lactoferrin and whey protein concentrate counterparts. CONCLUSION: The findings demonstrate that the bioactive peptides released from in vitro infant gastrointestinal digestion of bovine milk OPN alleviates intestinal epithelial cell inflammation by inhibiting NF-κB pathway activation and potentiates the barrier function of the intestinal epithelium.


Assuntos
Leite , NF-kappa B , Humanos , Lactente , Animais , Leite/química , Células CACO-2 , Osteopontina/genética , Osteopontina/metabolismo , Inflamação , Biomarcadores/análise , Anti-Inflamatórios , Mamíferos/metabolismo
2.
Mol Nutr Food Res ; 66(19): e2200098, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989465

RESUMO

SCOPE: Human milk oligosaccharides (HMOs), multifunctional glycans naturally present in human milk, are known to contribute to the infant's microbiota and immune system development. However, the molecular specificity of HMOs on microbiota and associated fermentation is not yet fully understood, and is important for the development of infant formula optimum functionality. METHODS AND RESULTS: In vitro fermentation is carried out on structurally different HMOs with infant fecal inocula dominated by Bifidobacterium longum, Bifidobacterium breve, and Bacteroides. The gas, metabolite (SCFA, lactate, and succinate) profiles, and microbiota responses differ between individual microbiota inocula patterns regardless of HMO structure. In terms of HMO pairs with same sugar composition but different glycosidic bonds, gas and metabolite profiles are similar with the B. longum- and B. breve-dominated inocula. However, large individual variations are observed with the Bacteroides-dominated inocula. The microbial communities at the end of fermentation are closely related to the initial microbiota composition. CONCLUSION: The findings demonstrate that short-term in vitro fermentation outcomes largely depend on the initial gut microbiota composition more than the impact of HMO molecular specificity. These results advance the current understanding for the design of personalized infant nutritional solutions and therapies in future.


Assuntos
Microbiota , Leite Humano , Bacteroides , Fermentação , Humanos , Lactente , Lactatos , Leite Humano/química , Oligossacarídeos/metabolismo , Succinatos , Açúcares
3.
Carbohydr Polym ; 287: 119322, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35422288

RESUMO

This study investigated the fermentation characteristics and microbial responses of human milk oligosaccharides (HMOs) by individual Bifidobacterium longum-dominant infant fecal microbiota. Fucosylated neutral HMOs (2'-fucosyllactose, 2'-FL; 3-fucosyllactose, 3-FL), sialylated HMOs (3'-sialyllactose, 3'-SL; 6'-sialyllactose, 6'-SL), and non-fucosylated neutral HMOs (Lacto-N-tetraose, LNT; Lacto-N-neotetraose, LNnT) were fermented in vitro, with fructooligosaccharides (FOS) and galactooligosaccharides (GOS) as positive controls. The fermentation rate was not affected by the molecular specificity of HMOs. Acetate (98-104 mM) and lactate (9-19 mM) were the primary metabolites at the end of fermentation. All six HMOs showed the same levels of acetate production, but sialylated HMOs produced significantly less lactate than neutral HMOs. HMOs and GOS could maintain the dominance or increase the relative abundance of Bifidobacterium longum, while FOS remarkably promote Klebsiella pneumoniae with the highest gas production and the least acetate and lactate yield. The findings are supportive to optimize infant nutrition strategies for enhanced functions.


Assuntos
Bifidobacterium longum , Leite Humano , Bifidobacterium longum/metabolismo , Fermentação , Humanos , Lactente , Ácido Láctico , Leite Humano/metabolismo , Oligossacarídeos/metabolismo
4.
Nutr Res Pract ; 15(3): 367-381, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34093977

RESUMO

BACKGROUND/OBJECTIVES: This study aimed to establish a mother and child cohort in the Chinese population, and investigate human breastmilk (HBM) composition and its relationship with maternal body mass index (BMI) and infant growth during the first 3 mon of life. SUBJECTS/METHODS: A total of 101 Chinese mother and infant pairs were included in this prospective cohort. Alterations in the milk macronutrients of Chinese mothers at 1 mon (T1), 2 mon (T2), and 3 mon (T3) lactation were analyzed. HBM fatty acid (FA) profiles were measured by gas chromatography (GC), and HBM proteomic profiling was achieved by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). RESULTS: During the first 3 mon of lactation (P < 0.05), significant decreases were determined in the levels of total energy, fat, protein, and osteopontin (OPN), as well as ratios of long-chain saturated FA (including C16:0, C22:0 and C24:0), monounsaturated FA (including C16:1), and n-6 poly unsaturated FA (PUFA) (including C20:3n-6 and C20:4n-6, and n-6/n-3). Conversely, butyrate, C6:0 and n-3 PUFA C18:3n-3 (α-linolenic acid, ALA) were significantly increased during the first 3 mon (P < 0.05). HBM proteomic analyses distinguished compositional protein differences over time (P = 0.001). Personalized mother-infant analyses demonstrated that HBM from high BMI mothers presented increased total energy, fat, protein and OPN, and increased content of n-6 PUFA (including C18:3n-6, C20:3n-6 and n-6/n-3 ratio) as compared with low BMI mothers (P < 0.05). Furthermore, BMI of the mothers positively correlated with the head circumference (HC) of infants as well as the specific n-6 PUFA C20:3n-6 over the 3 time points examined. Infant HC was negatively associated with C18:0. CONCLUSION: This study provides additional evidence to the Chinese HBM database, and further knowledge of FA function. It also helps to establish future maternal strategies that support the healthy growth and development of Chinese infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...