Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gastrointest Oncol ; 15(3): 1282-1296, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989406

RESUMO

Background and Objective: Lactic acid is a metabolite of glycolysis produced in the body, and its production is thought to be a mechanism by which cancer cells evade immune surveillance. Immune evasion and metabolic changes are well established as basic hallmarks of cancer. Although lactate has long been considered a waste product, it is now generally recognized to be a versatile small-molecule chemical that plays an important part in the tumor microenvironment (TME), with increased lactate production linked to the development of human malignancies. Metabolism in liver cancer is redirected toward glycolysis, which enhances the production of metabolic compounds used by tumor cells to produce proteins, lipids, and nucleotides, enabling them to maintain high proliferation rates and to establish the TME. Dysregulation of metabolic activity in liver cancer may impair antitumor responses owing to the immunosuppressive activity of the lactate produced by anaerobic glycolytic rates in tumor cells. This review primarily explores the link connection between lactic acid and the TME; evaluates the role of lactic acid in the occurrence, metastasis, prognosis, and treatment of liver cancer. Additionally, it investigates the associated pathways as potential targets for liver cancer treatment. Methods: Literature searches were conducted in PubMed, Web of Science, and Google Scholar, with the publication date of the most recent article included being January 2024. After eliminating duplicate articles and less relevant articles through titles and abstracts, we selected 113 articles for this review. We categorized references into two categories. One is to classify the content into lactate-related, liver cancer-related and tumor metabolism-related. The other is to classify the article types, which are divided into reviews, research articles and clinical trials. Additionally, we consulted the reference lists of the relevant articles to ensure coverage was comprehensive and unbiased. Key Content and Findings: The connection between lactic acid and the TME has recently become an area of intense research interest, and many related articles have been published in this field. The main finding of this review is to summarize the proven link between lactate and the TME and its possible impact on the TME of liver cancer. And analyzed the potential of lactate in liver cancer treatment and prognosis prediction. Conclusions: Lactate may be key to developing novel approaches in the future treatment of liver cancer. Related research on the combination of classic therapies and molecular targeted drugs may provide innovative medicines that more selectively regulate immune cell activity.

2.
Curr Med Sci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967889

RESUMO

OBJECTIVE: Colorectal cancer (CRC), a prevalent malignancy worldwide, has prompted extensive research into anticancer drugs. Traditional Chinese medicinal materials offer promising avenues for cancer management due to their diverse pharmacological activities. This study investigated the effects of Notopterygium incisum, a traditional Chinese medicine named Qianghuo (QH), on CRC cells and the underlying mechanism. METHODS: The sulforhodamine B assay and colony formation assay were employed to assess the effect of QH extract on the proliferation of CRC cell lines HCT116 and Caco-2. Propidium iodide (PI) staining was utilized to detect cell cycle progression, and PE Annexin V staining to detect apoptosis. Western blotting was conducted to examine the levels of apoptotic proteins, including B-cell lymphoma 2-interacting mediator of cell death (BIM), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (BAX) and cleaved caspase-3, as well as BIM stability after treatment with the protein synthesis inhibitor cycloheximide. The expression of BAX was suppressed using lentivirus-mediated shRNA to validate the involvement of the BIM/BAX axis in QH-induced apoptosis. The in vivo effects of QH extract on tumor growth were observed using a xenograft model. Lastly, APCMin+ mice were used to study the effects of QH extract on primary intestinal tumors. RESULTS: QH extract exhibited significant in vitro anti-CRC activities evidenced by the inhibition of cell proliferation, perturbation of cell cycle progression, and induction of apoptosis. Mechanistically, QH extract significantly increased the stability of BIM proteins, which undergo rapid degradation under unstressed conditions. Knockdown of BAX, the downstream effector of BIM, significantly rescued QH-induced apoptosis. Furthermore, the in vitro effect of QH extract was recapitulated in vivo. QH extract significantly inhibited the tumor growth of HCT116 xenografts in nude mice and decreased the number of intestinal polyps in the APCMin+ mice. CONCLUSION: QH extract promotes the apoptosis of CRC cells by preventing the degradation of BIM.

3.
J Pharm Biomed Anal ; 248: 116312, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908236

RESUMO

The gut microbiome plays pivotal roles in various physiological and pathological processes, with key metabolites including short chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (TRP) derivatives gaining significant attention for their diverse physiological roles. However, quantifying these metabolites presents challenges due to structural similarity, low abundance, and inherent technical limitations in traditional detection methods. In this study, we developed a precise and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method utilizing a chemical isotope derivatization technique employing 4-(aminomethyl)-N,N-dimethylaniline-d0/d6 (4-AND-d0/d6) reagents to quantify 37 typical gut microbiome-derived metabolites. This method achieved an impressive 1500-fold enhancement in sensitivity for detecting metabolites, compared to methods using non-derivatized, intact molecules. Moreover, the quantitative accuracy of our chemical isotope derivatization strategy proved comparable to the stable isotope labeled internal standards (SIL-IS) method. Subsequently, we successfully applied this newly developed method to quantify target metabolites in plasma, brain, and fecal samples obtained from a neonatal hypoxic-ischemic encephalopathy (HIE) rat model. The aim was to identify crucial metabolites associated with the progression of HIE. Overall, our sensitive and reliable quantification method holds promise in elucidating the role of gut microbiome metabolites in the pathogenesis of various diseases.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Fezes , Microbioma Gastrointestinal , Hipóxia-Isquemia Encefálica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Microbioma Gastrointestinal/fisiologia , Ratos , Cromatografia Líquida/métodos , Hipóxia-Isquemia Encefálica/metabolismo , Fezes/microbiologia , Fezes/química , Marcação por Isótopo/métodos , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Masculino , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/análise , Encéfalo/metabolismo , Espectrometria de Massa com Cromatografia Líquida
5.
ACS Appl Mater Interfaces ; 15(37): 43678-43690, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681296

RESUMO

Fossil fuel use is accelerating climate change, driving the need for efficient CO2 capture technologies. Solid adsorption-based direct air capture (DAC) of CO2 has emerged as a promising mode for CO2 removal from the atmosphere due to its potential for scalability. Sorbents based on porous supports incorporating oligomeric amines in their pore spaces are widely studied. In this study, we investigate the intermolecular interactions and adsorption of CO2 and H2O molecules in hyperbranched poly(ethylenimine) (HB-PEI) functionalized MCM-41 systems to understand the distribution and transport of CO2 and H2O molecules. Density Functional Theory (DFT) is employed to compute the binding energies of CO2 and H2O molecules with HB-PEI and MCM-41 and to develop force field parameters for molecular dynamics (MD) simulations. The MD simulations are performed to examine the distribution and transport of CO2 and H2O molecules as a function of the HB-PEI content. The study finds that an HB-PEI content of approximately 34 wt % is thermodynamically favorable, with an upper limit of HB-PEI loading between 45 and 50 wt %. The distribution of CO2 and H2O molecules is primarily determined by their adsorptive binding energies, for which H2O molecules dominate the occupation of binding sites due to their strong affinity with silanol groups on MCM-41 and amine groups of HB-PEI. The HB-PEI content has a considerable impact on the diffusion of CO2 and H2O molecules. Furthermore, a larger number of water molecules (higher relative humidity) reduces the correlation of CO2 with the MCM-41 pore surface while enhancing the correlation of CO2 with the amine groups of the HB-PEI. Overall, the presence of H2O molecules increases the CO2 correlation with the amine groups and also the CO2 transport within HB-PEI-loaded MCM-41, meaning that the presence of H2O enhances the CO2 capture in the HB-PEI-loaded MCM-41. These findings are consistent with experimental observations of the impact of increasing humidity on CO2 capture while providing new, molecular-level explanations for the macroscopic experimental findings.

7.
Phys Chem Chem Phys ; 25(17): 12522-12531, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133822

RESUMO

In this study, we investigate the molecular mechanisms of a microwave-driven selective heating process by performing molecular dynamics simulations for three different systems including pure water, pure polyethylene oxide (PEO), and water-PEO mixed systems in the presence of a microwave with two different intensities of electric field such as 0.001 V Å-1 and 0.01 V Å-1 at a frequency of 100 GHz. First, from performing molecular dynamics simulations of CO and CO2 in the presence of the microwave, it is confirmed that the molecular dipole moment is responsible for the rotational motion induced by the oscillating electric field. Second, by analyzing the MD simulations of the pure water system, we discover that the dipole moment of water exhibits a time lag with respect to the microwave. During the heating process, however, the temperature, kinetic, and potential energies increase synchronously with the oscillating electric field of the microwave, showing that the heating of the water system is caused by the molecular reaction of water to the microwave. Comparing the water-PEO mixed system to the pure water and pure PEO systems, the water-PEO mixed system has a higher heating rate than the pure PEO system but a lower heating rate than the pure water system. Therefore, we conclude that heating the water-PEO mixed system is driven by water molecules selectively activated by microwave irradiation. We also calculate the diffusion coefficients of water molecules and PEO chains by describing their mean square displacements, demonstrating that the diffusion coefficients are increased in the presence of microwaves for both water and PEO in pure and mixed systems. Lastly, during the microwave heating process, the structures of the water-PEO mixed system are altered as a function of the intensity of electric field, which is mainly driven by the response of water molecules.

8.
Oncol Lett ; 25(6): 218, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153032

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide; however, there is still a lack of effective clinical anti-CRC agents. Naturally-occurring compounds have been considered a potentially valuable source of new antitumorigenic agents. Involucrasin A, a novel natural molecule, was isolated from Shuteria involucrata (Wall.) Wight & Arn by our team. In the present study, the anticancer activity of involucrasin A in HCT-116 CRC cells was evaluated. Firstly, the anti-proliferative effect of involucrasin A on HCT-116 cells was analyzed by sulforhodamine B and colony formation assays. The results revealed that involucrasin A exhibited a potent inhibitory effect on HCT-116 CRC cell proliferation in vitro. Subsequently, flow cytometry and western blotting indicated that involucrasin A induced apoptosis and upregulated the expression levels of apoptosis-related proteins, such as cleaved-caspase 6 and cleaved-caspase 9, in a dose-dependent manner. Mechanistically, involucrasin A significantly inhibited the phosphorylation of Akt and murine double minute 2 homologue (MDM2), which resulted in increased intracellular levels of p53. This was reversed by exogenous expression of the constitutively active form of Akt. Similarly, either knocking out p53 or knocking down Bax abrogated involucrasin A-induced proliferation inhibition and apoptosis. Together, the present study indicated that involucrasin A exerts antitumorigenic activities via modulating the Akt/MDM2/p53 pathway in HCT-116 CRC cells, and it is worthy of further exploration in preclinical and clinical trials.

9.
iScience ; 26(1): 105735, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36582827

RESUMO

As global interest in renewable energy continues to increase, there has been a pressing need for developing novel energy storage devices based on organic electrode materials that can overcome the shortcomings of the current lithium-ion batteries. One critical challenge for this quest is to find materials whose redox potential (RP) meets specific design targets. In this study, we propose a computational framework for addressing this challenge through the effective design and optimal operation of a high-throughput virtual screening (HTVS) pipeline that enables rapid screening of organic materials that satisfy the desired criteria. Starting from a high-fidelity model for estimating the RP of a given material, we show how a set of surrogate models with different accuracy and complexity may be designed to construct a highly accurate and efficient HTVS pipeline. We demonstrate that the proposed HTVS pipeline construction and operation strategies substantially enhance the overall screening throughput.

10.
Front Pharmacol ; 13: 1039235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408232

RESUMO

There are technical obstacles in the safety evaluation of traditional Chinese medicine (TCM) injections due to their complex chemical nature and the lack of rapid and accurate in vitro methods. Here, we established a dual in vitro mitochondrial toxicity approach combing the conventional "glucose/galactose" assay in HepG2 cells with the cytotoxic assay in mitochondrial respiration deficient cells. Using this dual in vitro approach, for the first time, we systematically assessed the mitochondrial toxicity of TCM injections. Four of the 35 TCM injections, including Xiyanping, Dengzhanhuasu, Shuanghuanglian, and Yinzhihuang, significantly reduced cellular ATP production in galactose medium in the first assay, and presented less cytotoxic in the respiration deficient cells in the second assay, indicating that they have mitochondrial toxicity. Furthermore, we identified scutellarin, rutin, phillyrin, and baicalin could be the potential mitochondrial toxic ingredients in the 4 TCM injections by combining molecular docking analysis with experimental validation. Collectively, the dual in vitro approach is worth applying to the safety evaluation of more TCM products, and mitochondrial toxic TCM injections and ingredients found in this study deserve more attention.

12.
Biochem Biophys Res Commun ; 551: 38-45, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714758

RESUMO

Isocitrate dehydrogenase 1 (IDH1) mutant R132H, promoting the oncometabolite D-2-hydroxyglutarate (D2HG), is a driver mutation and an emerging therapeutic target in glioma. This study identified a novel mutant IDH1 inhibitor, WM17, by virtual screening and enzymatic confirmation. It could bind to and increase mutant IDH1 protein's thermostability in both endogenous heterozygous cells and exogenous overexpressed cells. Consequently, WM17 reversed the accumulation of D2HG and histone hypermethylation in IDH1 mutated cells. Finally, we concluded that WM17 significantly inhibited cell migration in IDH1 mutated glioma cells, although it has no apparent effect on cell proliferation. Further studies are guaranteed toward the development of WM17 as a therapeutic agent for IDH1 mutated glioma.


Assuntos
Glioma/tratamento farmacológico , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Proteínas Mutantes/antagonistas & inibidores , Mutação , Benzenoacetamidas/farmacologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Histonas/metabolismo , Humanos , Imidazóis/farmacologia , Metilação/efeitos dos fármacos , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas Mutantes/genética , Ligação Proteica
13.
Acta Pharmacol Sin ; 42(11): 1875-1887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33608672

RESUMO

RAS-driven colorectal cancer relies on glucose metabolism to support uncontrolled growth. However, monotherapy with glycolysis inhibitors like 2-deoxy-D-glucose causes limited effectiveness. Recent studies suggest that anti-tumor effects of glycolysis inhibition could be improved by combination treatment with inhibitors of oxidative phosphorylation. In this study we investigated the effect of a combination of 2-deoxy-D-glucose with lovastatin (a known inhibitor of mevalonate pathway and oxidative phosphorylation) on growth of KRAS-mutant human colorectal cancer cell lines HCT116 and LoVo. A combination of lovastatin (>3.75 µM) and 2-deoxy-D-glucose (>1.25 mM) synergistically reduced cell viability, arrested cells in the G2/M phase, and induced apoptosis. The combined treatment also reduced cellular oxygen consumption and extracellular acidification rate, resulting in decreased production of ATP and lower steady-state ATP levels. Energy depletion markedly activated AMPK, inhibited mTOR and RAS signaling pathways, eventually inducing autophagy, the cellular pro-survival process under metabolic stress, whereas inhibition of autophagy by chloroquine (6.25 µM) enhanced the cytotoxic effect of the combination of lovastatin and 2-deoxy-D-glucose. These in vitro experiment results were reproduced in a nude mouse xenograft model of HCT116 cells. Our findings suggest that concurrently targeting glycolysis, oxidative phosphorylation, and autophagy may be a promising regimen for the management of RAS-driven colorectal cancers.


Assuntos
Autofagia/fisiologia , Neoplasias Colorretais/genética , Desoxiglucose/administração & dosagem , Lovastatina/administração & dosagem , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antimetabólitos/administração & dosagem , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cloroquina/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Células HCT116 , Células HEK293 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Geohealth ; 4(8): e2020GH000248, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832822

RESUMO

To regulate regional water resources, it is essential to identify the relationships among the elements that influence water conservation. Taking the Beijing-Tianjin-Hebei urban agglomeration as the study area, the authors applied a new method in combination with a geodetector model and spatial elastic coefficient trajectory model to reveal factors controlling water conservation and to identify relationships among the elements driving water conservation, in which the water conservation capacity and its spatial distribution were achieved using an Integrated Valuation of Ecosystem Services and Tradeoffs model. The authors selected precipitation, potential evapotranspiration, temperature, land use, maximum burial depth of soil, plant-available water content, soil-saturated hydraulic conductivity, percentage slope, gross domestic product, and population as the spatial driving factors, which measured the influence on the distribution of water conservation capacity on the whole region, plateaus, mountains, and plains, respectively. On the basis of previous research results, the authors selected precipitation, potential evapotranspiration, and land use as time-driven factors. The results indicated that the strong water conservation capacity was reflected primarily in the Yanshan and Taihang Mountains and the eastern coastal areas. The water conservation capacity of the entire region, mountains, plateaus, and plains was affected mainly by the soil-saturated hydraulic conductivity, plant-available water content, precipitation, and precipitation, respectively. Each driving factor exhibited a clearly interactive influence on the spatial distribution of water conservation in terms of space and time.

15.
PeerJ ; 7: e7874, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608185

RESUMO

The development of the urban agglomeration has caused drastic changes in landscape pattern and increased anthropogenic heat emission and lead to the urban heat island (UHI) effect more serious. Therefore, understanding the interpretation ability of landscape pattern on the thermal environment has gradually become an important focus. In the study, the spatial heterogeneity of the surface temperature was analyzed using the hot-spot analysis method which was improved by changing the calculation of space weight. Then the interpretation ability of a single landscape and a combination of landscapes to explain surface temperature was explored using the Pearson correlation coefficient and ordinary least squares regression from different spatial levels, and the spatial heterogeneity of the interpretation ability was explored using geographical weighted regression under the optimal granularity (5 × 5 km). The results showed that: (1) The hot spots of surface temperature were distributed mainly in the plains and on the southeast hills, where the landscapes primarily include artificial landscape (ArtLS) and farmland landscape (FarmLS). The cold spots were distributed mainly in the northern hills, which are dominated by forest landscape (ForLS). (2) On the whole, the interpretative ability of ForLS, FarmLS, ArtLS, green space landscape pattern, and ecological landscape pattern to explain surface temperature was stronger, whereas the interpretative ability of grassland landscape and wetland landscape to explain surface temperature was weaker. The interpretation ability of landscape pattern to explain surface temperature was obviously different in different areas. Specifically, the ability was stronger in the hills than in the plain and plateau. The results are intended to provide a scientific basis for adjusting landscape structural, optimizing landscape patterns, alleviating the UHI effect, and coordinating the balance among cities within the urban agglomeration.

16.
PeerJ ; 7: e7306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341745

RESUMO

The assessment of ecological security patterns is a topic of conversation in landscape ecology in recent years. However, ecosystem services and human activities are seldom considered comprehensively in the assessment of ecological security patterns. The present study employs the Beijing-Tianjin-Hebei urban agglomeration as a study area, and uses ecological services to determine the ecological sources. The importance of ecological sources is classified based on logical coding and functional types of ecological services. The research combines regional characteristics to select and quantitatively calculate three human disturbance factors: soil erosion sensitivity, geological hazard sensitivity, and night lighting. Then the basic surface resistance of land use to limit migration is modified and ecological corridors are identified by combining these three disturbance factors. The results indicate that the sources of water production, soil and water conservation, and carbon fixation are mainly provided in mountainous areas, recreation sources are mostly distributed in the plains, and these ecological sources improve the maintenance of ecological corridors. The modification of resistance surfaces significantly changes the length of ecological corridors in Tianjin, Tangshan, Cangzhou, and Beijing, and the modified resistance surface improves the recognition of ecological corridors. This study provides a new research framework for identifying the ecological security patterns of urban agglomerations and provides scientific guidance related to ecological protection and urban planning for the Beijing-Tianjin-Hebei urban agglomeration.

17.
J Cell Mol Med ; 20(5): 874-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26798992

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. However, little is known about its presence or effects in human adipose-derived stem cells (hADSCs). In this study, the expression of PACAP type I receptor (PAC1R) was first confirmed in hADSCs. Maxadilan, a specific agonist of PAC1R, could increase hADSC proliferation as determined by Cell Counting Kit-8 and cell cycle analysis and promote migration as shown in wound-healing assays. Maxadilan also showed anti-apoptotic activity in hADSCs against serum withdrawal-induced apoptosis based on Annexin V/propidium iodide analysis and mitochondrial membrane potential assays. The anti-apoptotic effects of maxadilan correlated with the down-regulation of Cleaved Caspase 3 and Caspase 9 as well as up-regulation of Bcl-2. The chemical neural differentiation potential could be enhanced by maxadilan as indicated through quantitative PCR, Western blot and cell morphology analysis. Moreover, cytokine neural redifferentiation of hADSCs treated with maxadilan acquired stronger neuron-like functions with higher voltage-dependent tetrodotoxin-sensitive sodium currents, higher outward potassium currents and partial electrical impulses as determined using whole-cell patch clamp recordings. Maxadilan up-regulated the Wnt/ß-catenin signalling pathway associated with dimer-dependent activity of PAC1R, promoting cell viability that was inhibited by XAV939, and it also activated the protein kinase A (PKA) signalling pathway associated with ligand-dependent activity of PAC1R, enhancing cell viability and neural differentiation potential that was inhibited by H-89. In summary, these results demonstrated that PAC1R is present in hADSCs, and maxadilan could enhance hADSC viability and neural differentiation potential in neural differentiation medium.


Assuntos
Adipócitos/efeitos dos fármacos , Proteínas de Insetos/farmacologia , Neurônios/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Adipócitos/citologia , Adipócitos/metabolismo , Anexina A5/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Isoquinolinas/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/agonistas , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Sulfonamidas/farmacologia , Tetrodotoxina/farmacologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...