Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 206: 107254, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862069

RESUMO

Gut damage during carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-HvKP) infection is associated with a death risk. Understanding the mechanisms by which CR-HvKP causes intestinal damage and gut microbiota alteration, and the impact on immunity, is crucial for developing therapeutic strategies. This study investigated if gastrointestinal tract damage and disruption of gut microbiota induced by CR-HvKP infection undermined host immunity and facilitated multi-organ invasion of CR-HvKP; whether the therapeutic value of the rifampicin (RIF) and zidovudine (ZDV) combination was attributed to their ability to repair damages and restore host immunity was determined. A sepsis model was utilized to assess the intestinal pathological changes. Metagenomic analysis was performed to characterize the alteration of gut microbiota. The effects of the RIF and ZDV on suppressing inflammatory responses and improving immune functions and gut microbiota were evaluated by immunopathological and transcriptomic analyses. Rapid colonic damage occurred upon activation of the inflammation signaling pathways during lethal infections. Gut inflammation compromised host innate immunity and led to a significant decrease in probiotics abundance, including Bifidobacterium and Lactobacillus. Treatment with combination drugs significantly attenuated the inflammatory response, up-regulated immune cell differentiation signaling pathways, and promoted the abundance of Bifidobacterium (33.40 %). Consistently, supplementation of Bifidobacterium alone delayed the death in sepsis model. Gut inflammation and disrupted microbiota are key disease features of CR-HvKP infection but can be reversed by the RIF and ZDV drug combination. The finding that these drugs can restore host immunity through multiple mechanisms is novel and deserves further investigation of their clinical application potential.

2.
Microbes Infect ; : 105380, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909679

RESUMO

Acinetobacter baumannii (AB) infections have become a global public health concern due to the continued increase in the incidence of infection and the rate of resistance to carbapenems. This study aimed to investigate the genomic features of AB strains recovered from a tertiary hospital and assess the clinical implications of the findings. A total of 217 AB strains were collected between 2016 and 2018 at a tertiary hospital in Guangzhou, with 183 (84.33%) being carbapenem-resistant AB (CRAB), with the main mechanism being the carriage of the blaOXA-23 gene. The overall mortality rate of patients caused by such strains was 15.21% (n = 33). Artificial lung ventilation and the use of meropenem were mortality risk factors in AB-infected patients, while KL2 AB infection was negatively associated. Core genome multilocus sequence typing and clustering analysis were performed on the integrated AB genome collection from the NCBI database and this study to illustrate the population structure among China. The results revealed diverse core genome profiles (n = 17) among AB strains from China, and strains from this single hospital exhibited most of the core genome profiles (n = 13), suggesting genetic variability within the hospital and transmission across the country. These findings show that the high transmission potential of the CRAB strains and meropenem usage that confers a selective advantage of CRAB clinically are two major factors that pose significant challenges to the effective clinical management of AB infections. Understanding the genetic features and transmission patterns of clinical AB strains is crucial for the effective control of infections caused by this pathogen.

3.
Sci Rep ; 14(1): 11628, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773200

RESUMO

This study aimed to analyze the impact of the lockdown period due to COVID-19 pandemic on the mental health status of healthcare workers and identify the related risk factors of psychosomatic distress. We conducted an online questionnaire survey to investigate the general demographic characteristics, perceived stress level, adult attachment style (AAS), family cohesion and adaptability, social support, sleep state, emotional state, and physical health of healthcare workers during the lockdown period due to the pandemic in 2022. We compared the mental health status between doctors and nurses, and further analyzed the factors influencing sleep, emotions, physical symptoms, and severe psychosomatic distress separately. For factors that showed statistical significance in the univariate analysis, forward stepwise regression was used for logistic regression analysis to identify risk factors for the corresponding issues. A total of 622 healthcare workers participated in the survey. Among the participants, 121 (19.5%) reported sleep problems, 209 (33.6%) had negative emotional states, and 147 (23.6%) reported physical health problems. There were 48 (7.7%) healthcare workers with severe psychosomatic distress. Compared to the group of nurses, the group of doctors exhibit a higher prevalence of emotional issues, physical health problems and psychosomatic distress. Perceived stress was identified as a risk factor for sleep disturbance, while living with others during quarantine and family adaptability were identified as protective factors. Higher educational background and perceived stress were identified as risk factors for negative emotion, while subjective support was identified as a protective factor. Perceived stress and coming from a rural area were also identified as risk factors for physical health. Overall, for the comparison between the no psychosomatic distress and severe psychosomatic distress groups, perceived stress was identified as a risk factor for severe psychosomatic distress, while subjective support was identified as a protective factor. Healthcare workers' potential mental and physical health problems are related to their educational background, family cohesion and adaptability, perceived stress and social support. This makes it clearer on how to deal with and prevent adverse consequences when facing stressful situations.


Assuntos
COVID-19 , Pessoal de Saúde , Saúde Mental , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , Masculino , Feminino , Adulto , Fatores de Risco , Pessoal de Saúde/psicologia , Pessoa de Meia-Idade , Inquéritos e Questionários , Estresse Psicológico/epidemiologia , Estresse Psicológico/psicologia , Fatores de Proteção , SARS-CoV-2/patogenicidade , Pandemias , Quarentena/psicologia , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/psicologia
4.
mSystems ; 9(6): e0116423, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747582

RESUMO

Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella , Sequenciamento Completo do Genoma , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/transmissão , Infecções por Salmonella/tratamento farmacológico , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Sensibilidade Microbiana , Filogenia , Genômica , Plasmídeos/genética
5.
Front Psychol ; 15: 1330581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515978

RESUMO

Background: To determine the relationships between attachment style, social support, and mental health states, as well as the mediation mechanism within this relationship, we conducted a survey among healthcare workers during the coronavirus disease 2019 (COVID-19) epidemic quarantine. Methods: The survey assessed their mental health states, adult attachment style, social support, and some other relevant information. Mental health states were represented by the overall state of sleep, physical and emotional assessment. A multiple mediator model was used to explain how social support could mediate the relationship between attachment and mental health states during COVID-19 quarantine. Results: Our findings revealed that 33.3% of the participants experienced emotional issues, 8.5% had sleep problems, and 24.9% reported physical discomfort. The direct effect of adult attachment styles on mental health states during COVID-19 quarantine was significant (c' = -0.3172; p < 0.01). The total indirect effect also showed statistical significance (ab = -0.1857; p < 0.01). Moreover, the total effect of adult attachment styles on mental health states was -0.5029 (c = -0.5029; p < 0.01). Subjective social support and utilization of social support play mediating roles in the relationship between attachment style and mental health states, respectively (ab1 = -0.1287, 95% CI: -0.9120 to -0.3341, ab2 = 0.0570, 95% CI: -0.4635 to -0.1132). Conclusion: These findings highlight social support played a mediation role between attachment style and mental health states. Thus, offering social support during a crisis might be useful for those individuals with an insecure attachment.

6.
Microbiol Res ; 283: 127666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460283

RESUMO

The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum ß-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.


Assuntos
Sequenciamento por Nanoporos , Plasmídeos/genética , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Bactérias/genética , Antibacterianos/farmacologia
7.
Sci Total Environ ; 921: 170903, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354793

RESUMO

The Bacillus cereus group, as one of the important opportunistic foodborne pathogens, is considered a risk to public health due to foodborne diseases and an important cause of economic losses to food industries. This study aimed to gain essential information on the prevalence, phenotype, and genotype of B. cereus group strains isolated from various food products in China. A total of 890 strains of B. cereus group bacteria from 1181 food samples from 2020 to 2023 were identified using the standardized detection method. These strains were found to be prevalent in various food types, with the highest contamination rates observed in cereal flour (55.8 %) and wheat/rice noodles (45.7 %). The tested strains exhibited high resistance rates against penicillin (98.5 %) and ampicillin (98.9 %). Strains isolated from cereal flour had the highest rate of meropenem resistance (7.8 %), while strains from sausages were most resistant to vancomycin (16.8 %). A total of 234 out of the 891 B. cereus group strains were randomly selected for WGS analysis, 18.4 % of which displayed multidrug resistance. The species identification by WGS analysis revealed the presence of 10 distinct species within the B. cereus group, with B. cereus species being the most prevalent. The highest level of species diversity was observed in sausages. Notably, B. anthracis strains lacking the anthrax toxin genes were detected in flour-based food products and sausages. A total of 20 antibiotic resistance genes have been identified, with ß-lactam resistance genes (bla1, bla2, BcI, BcII, and blaTEM-116) being the most common. The B. tropicus strains exhibit the highest average number of virulence genes (23.4). The diarrheal virulence genes nheABC, hblACD, and cytK were found in numerous strains. Only 4 of the 234 (1.7 %) sequenced strains contain the ces gene cluster linked to emetic symptoms. These data offer valuable insights for public health policymakers on addressing foodborne B. cereus group infections and ensuring food safety.


Assuntos
Bacillus , Bacillus cereus/genética , Enterotoxinas/análise , Microbiologia de Alimentos , Prevalência , Genômica , Contaminação de Alimentos/análise
8.
Sci Total Environ ; 916: 170058, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218490

RESUMO

The global transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a significant and grave threat to human health. To investigate the potential relationship between hospital sewage and the transmission of CRAB within healthcare facilities, isolates of Acinetobacter spp. obtained from untreated hospital sewage samples were subjected to antimicrobial susceptibility tests, genome sequencing, and bioinformatic and phylogenetic tree analysis, and that data were matched with those of the clinical isolates. Among the 70 Acinetobacter spp. sewage isolates tested, A. baumannii was the most prevalent and detectable in 5 hospitals, followed by A. nosocomialis and A. gerneri. Worryingly, 57.14 % (40/70) of the isolates were MDR, with 25.71 % (18/70) being resistant to carbapenem. When utilizing the Pasteur scheme, ST2 was the predominant type among these CRAB isolates, with Tn2006 (ΔISAba1-blaOXA-23-ATPase-yeeB-yeeA-ΔISAba1) and Tn2009 (ΔISAba1-blaOXA-23-ATPase-hp-parA-yeeC-hp-yeeB-ΔISAba1) being the key mobile genetic elements that encode carbapenem resistance. Seven A. gerneri isolates which harbored Tn2008 (ISAba1-blaOXA-23 -ATPase) and the blaPER-1 gene were also identified. Besides, an A. soil isolate was found to exhibit high-level of meropenem resistance (MIC ≥128 mg/L) and harbor a blaNDM-1 gene located in a core genetic structure of ISAba125-blaNDM-1-ble-trpF-dsbC-cutA. To investigate the genetic relatedness between isolates recovered from hospital sewage and those collected from ICUs, a phylogenetic tree was constructed for 242 clinical isolates and 9 sewage isolates. The results revealed the presence of two evolutionary clades, each containing isolates from both ICU and sewage water, suggesting that CRAB isolates in untreated sewage water were also the transmission clones or closely related evolutionary isolates recoverable in hospital settings. Findings in this work confirm that hospital sewage is a potential reservoir of CRAB.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Esgotos , Filogenia , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Carbapenêmicos/farmacologia , Hospitais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/uso terapêutico , Água
9.
Emerg Microbes Infect ; 13(1): 2306957, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38240375

RESUMO

The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses grave threats to human health. These strains increased dramatically in clinical settings in China in the past few years but not in other parts of the world. Four isogenic K. pneumoniae strains, including classical K. pneumoniae, carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP) and CR-hvKP, were created and subjected to phenotypic characterization, competition assays, mouse sepsis model and rat colonization tests to investigate the mechanisms underlying the widespread nature of CR-hvKP in China. Acquisition of virulence plasmid led to reduced fitness and abolishment of colonization in the gastrointestinal tract, which may explain why hvKP is not clinically prevalent after its emergence for a long time. However, tigecycline treatment facilitated the colonization of hvKP and CR-hvKP and reduced the population of Lactobacillus spp. in animal gut microbiome. Feeding with Lactobacillus spp. could significantly reduce the colonization of hvKP and CR-hvKP in the animal gastrointestinal tract. Our data implied that the clinical use of tigecycline to treat carbapenem-resistant K. pneumoniae infections facilitated the high spread of CR-hvKP in clinical settings in China and demonstrated that Lactobacillus spp. was a potential candidate for anticolonization strategy against CR-hvKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Camundongos , Humanos , Ratos , Animais , Tigeciclina/farmacologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Carbapenêmicos/farmacologia , Virulência , Modelos Animais de Doenças , Antibacterianos/farmacologia
10.
BMC Chem ; 17(1): 183, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104171

RESUMO

Carbapenem-resistant Enterobacterales (CRE) has emerged as a worldwide spread nosocomial superbug exhibiting antimicrobial resistance (AMR) to all current antibiotics, leaving limited options for treating its infection. To discovery novel antibiotics against CRE, we designed and synthesized a series of 14 isothiazol-3(2H)-one analogues subjected to antibacterial activity evaluation against Escherichia coli (E. coli) BL21 (NDM-1) and clinical strain E. coli HN88 for investigating their structure-activity relationships (SAR). The results suggested that 5-chloroisothiazolone core with an N-(4-chlorophenyl) substitution 5a was the most potent antibacterial activity against the E. coli BL21 (NDM-1) with MIC value of less than 0.032 µg/mL, which was at least 8000-fold higher than the positive control Meropenem (MRM). It also displayed 2048-fold potent than the positive control MRM against E. coli HN88. Additionally, SAR analysis supported the conclusion that compounds with a chloro-group substituted on the 5-position of the heterocyclic ring was much more potent than other positions. The board spectrum analysis suggested that compound 5a showed a promising antimicrobial activity on MRSA and CRE pathogens. Meanwhile, cytotoxicity study of compound 5a suggested that it had a therapeutic index value of 875, suggesting future therapeutic potential. In vivo efficacy study declared that compound 5a could also protect the BALB/c mice against American type culture collection (ATCC) 43,300. Further screening of our compounds against a collection of CRE strains isolated from patients indicated that compound 5 g displayed much stronger antibacterial activity compared with MRM. In conclusion, our studies indicated that isothiazolones analogues could be potent bactericidal agents against CRE and MRSA pathogens.

11.
Euro Surveill ; 28(37)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37707983

RESUMO

BackgroundIn China, the bla NDM gene has been recovered from human bacterial isolates since 2011. After 2014, detections of this gene in animal and food bacterial isolates have increasingly been reported.AimWe aimed to understand how bla NDM-bearing bacteria could spread between humans, animals, and animal-derived food.MethodsA total of 288 non-duplicate Escherichia coli strains, including 130 bla NDM-carrying and 158 bla NDM-negative strains were collected from clinical (humans), food-producing animals (pigs) and food (retail pork) sources between 2015 and 2017. The strains were whole genome sequenced. Core-genome-multilocus-sequence-typing was conducted. To investigate if sequence types (STs) found in human, animal or food samples could have a prior origin in a clinical, animal or food-borne animal reservoir, discriminant analysis of principal components (DAPC) was used. Plasmids bearing bla NDM were characterised.ResultsThe 130 bla NDM-carrying E. coli strains comprised a total of 60 STs, with ST167 (10/51), ST77 (6/33) and ST48 (6/46) being most prevalent in clinical, animal and food sources, respectively. Some ST10 and ST167 strains were respectively found among all three sources sampled, suggesting they might enable transfer of bla NDM between sources. DAPC analysis indicated possible transmissions of ST167 from humans to animals and ST10 from animals to human. In 114 of 130 bla NDM-carrying isolates, bla NDM was located on an IncX3 plasmid.ConclusionThis study in a Chinese context suggests that cross-species transmission of certain STs of E. coli harbouring bla NDM on mobile elements, may facilitate the spread of carbapenem-resistant Enterobacteriaceae. Stringent monitoring of bla NDM-bearing E. coli in ecosystems is important.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Ecossistema , Humanos , Animais , Suínos , Escherichia coli/genética , Genômica , China/epidemiologia
12.
Microbiol Spectr ; : e0488622, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615439

RESUMO

In this work, we collected foodborne Salmonella strains in Shenzhen, China, during 2014-2017 and investigated the genetic profile of all cefotaxime-resistant isolates in the collection. The strains were subjected to antimicrobial susceptibility tests, whole-genome sequencing, bioinformatics analysis, and conjugation studies. A total of 79 cefotaxime-resistant Salmonella were identified and found to exhibit multidrug resistance. Resistance rate recorded during the study period increased from 1.9% to 9.1%. Salmonella Typhimurium was the predominant serovar, and CTX-M family genes were dominant among the ESBLs genes detected. Notably, CTX-M-bearing plasmids or transposons often contain other drug resistance genes. Furthermore, a combination of CTX-M-55 and CTX-M-65 genes was detected for the first time in foodborne Salmonella strains. Our findings reveal the prevalence and molecular characteristics of cefotaxime-resistant foodborne Salmonella strains in southern China. IMPORTANCE Cefotaxime-resistant Salmonella strains pose an increasing threat to human health by causing infections with limited treatment options. It is therefore necessary to undertake a surveillance on the prevalence of such strains and investigate the resistance and transmission mechanisms. In this work, various ESBL genes flanked by different IS located in different mobile genetic elements were detectable among cefotaxime-resistant Salmonella strains. These data show that the high prevalence and genotypic diversity of cefotaxime-resistant foodborne Salmonella strains in China are possibly attributed to the evolution and transmission of a wide range of multidrug resistance-encoding mobile genetic elements.

13.
Microbiol Spectr ; 11(3): e0426122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078855

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a bacterial pathogen that may cause serious drug-resistant infections that are potentially fatal. To investigate the genetic characteristics of these organisms, we tested 416 P. aeruginosa strains recovered from 12 types of clinical samples collected in 29 different hospital wards in 10 hospitals in Guangdong Province, China, from 2017 to 2020. These strains were found to belong to 149 known sequence types (STs) and 72 novel STs, indicating that transmission of these strains involved multiple routes. A high rate of resistance to imipenem (89.4%) and meropenem (79.4%) and a high prevalence of pathogenic serotypes (76.4%) were observed among these strains. Six STs of global high-risk clones (HiRiCs) and a novel HiRiC strains, ST1971, which exhibited extensive drug resistance, were identified. Importantly, ST1971 HiRiC, which was unique in China, also exhibited high virulence, which alarmed the further surveillance on this highly virulent and highly resistant clone. Inactivation of the oprD gene and overexpression of efflux systems were found to be mainly responsible for carbapenem resistance in these strains; carriage of metallo-ß-lactamase (MBL)-encoding genes was less common. Interestingly, frameshift mutations (49.0%) and introduction of a stop codon (22.4%) into the oprD genes were the major mechanisms of imipenem resistance. On the other hand, expression of the MexAB-OprM efflux pump and MBL-encoding genes were mechanisms of resistance in >70% of meropenem-resistant strains. The findings presented here provide insights into the development of effective strategies for control of worldwide dissemination of CRPA. IMPORTANCE Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a major concern in clinical settings worldwide, yet few genetic and epidemiological studies on CRPA strains have been performed in China. Here, we sequence and analyze the genomes of 416 P. aeruginosa strains from hospitals in China to elucidate the genetic, phenotypic, and transmission characteristics of CRPA strains and to identify the molecular signatures responsible for the observed increase in the prevalence of CRPA infections in China. These findings may provide new insight into the development of effective strategies for worldwide control of CRPA and minimize the occurrence of untreatable infections in clinical settings.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Pseudomonas aeruginosa , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Imipenem/farmacologia , Imipenem/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
14.
Microbiol Res ; 265: 127211, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191468

RESUMO

Colistin resistance mediated by mcr-1-bearing plasmids poses a new challenge to treatment of Salmonella infections. To probe the scale of the problem that colistin resistance mediated by mcr-1 plasmids among Salmonella, the prevalence of mcr-1 in foodborne Salmonella recovered from 2014 to 2017 in Shenzhen, China and genetic profile of mcr-1 positive isolates were investigated. All mcr-1 positives Salmonella strains were collected from food products, characterized by PCR and MALDI-TOF, and subjected to antimicrobial susceptibility testing, whole-genome sequencing, bioinformatics analysis, and conjugation. Twenty-eight mcr-1-positive Salmonella strains were recovered from pork. The rate of recovery displayed an increasing trend and was often accompanied by multidrug resistance. Salmonella Typhimurium was the most prevalent serotypes. Comparative genomic analysis indicated that the mcr-1 gene was located on the transferable IncX4 plasmids, as well as the IncHI2 plasmids, in which the gene was associated with ISApl1. All two types of plasmids were often detected in zoonotic pathogen. Transferable 251K mcr-1-bearing IncHI2 type plasmids were frequently reported in human and food-producing animals, but this is first time to detect a certain number in food. These findings show that dissemination of these two types of plasmids is responsible for the increase in the prevalence of colistin resistance in Salmonella strains in recent years, leading to rapid emergence of MDR Salmonella upon acquisition of these two mcr-1-bearing plasmids. Transmission of IncX4 and IncHI2 plasmids in Salmonella would cause huge public health concerns in controlling foodborne infections caused by Salmonella.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , China/epidemiologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética
15.
Int J Antimicrob Agents ; 60(2): 106628, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35760224

RESUMO

The continuous emergence of carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) poses a great challenge to human health owing to the associated extremely high morbidity and mortality. Klebsiella quasipneumoniae is a newly described bacterial species that is often misidentified as K. pneumoniae. Clinical K. quasipneumoniae strains have been reported worldwide, among which multidrug-resistant lineages have become a severe health problem, while less has been understood on this important pathogen. In this study, we characterised three clinical carbapenem-resistant K. quasipneumoniae subsp. similipneumoniae isolates belonging to sequence type 367 (ST367) and capsular type K1 and containing several virulence genes, including salmochelin (iroBCDN), aerobactin (iucABCDiutA) and regulator of mucoid phenotype (rmpA/A2), as well as some resistance genes, including blaKPC-2, blaTEM-1, blaOKP-B-9 and oqxAB. These carbapenem-resistant K. quasipneumoniae subsp. similipneumoniae strains containing virulence genes exhibited a higher level of virulence and serum resistance than a classical K. pneumoniae strain, while their virulence levels were slightly lower compared with typical ST11 CR-hvKP and ST23 K1 hvKP strains. This study reports for the first time the genetic and virulence characterisation of clinical K. quasipneumoniae subsp. similipneumoniae strains that simultaneously contained blaKPC-2 and virulence genes, contributing to a better understanding of their resistance and pathogenicity as well as for epidemic surveillance worldwide.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Humanos , Klebsiella , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae , Plasmídeos/genética , Virulência/genética
16.
Emerg Microbes Infect ; 11(1): 1730-1741, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35730377

RESUMO

Acinetobacter baumannii is one of the key Gram-negative pathogens that can cause serious nosocomial infections. In China, a large proportion of clinical A. baumannii strains are multidrug resistant, among which strains resistant to carbapenems are particularly worrisome, as infections caused by such strains may limit the choice of existing antibiotics. We conducted a nationwide and genome-based surveillance on the prevalence and antibiotic susceptibility profile of carbapenem-resistant A. baumannii (CRAB) strains collected from intensive care units (ICUs) in hospitals in different provinces and investigated the routes of transmission and mechanism of resistance by whole-genome sequencing and phylogenetic analysis. We found that CRAB strains were prevalent in 71.4% (55/77) of the ICUs surveyed. Clonal spread of CRAB was found in 37.6% (29/77) of ICUs and a total of 22 different clones were identified. Most clones were transmissible within one ICU, but up to six clones could be detected in at least three hospitals. In addition, carbapenem-hydrolysing class D ß-lactamases (CHDL) were found to be mainly responsible for carbapenem-resistance in A. baumannii and the ST2 global-clone is the predominant type of CRAB in China. Importantly, we found that CRAB isolates currently exhibited an extremely low rate of resistance to colistin (0.4%) and tigecycline (2.5%), but a high rate of resistance to ceftazidime-avibactam (70.2%). Findings in this work shall facilitate development of appropriate antimicrobial regimens for treatment of CRAB infections. Further surveillance and research on the evolutionary and epidemiological features of clinical CRAB strains are necessary.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Hospitais , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Filogenia , beta-Lactamases/genética
17.
Commun Biol ; 5(1): 613, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729200

RESUMO

Colistin is the last-line antibiotic against Gram-negative pathogens. Here we identify an FDA-approved drug, Otilonium bromide (Ob), which restores the activity of colistin against colistin-resistant Gram-negative bacteria in vitro and in a mouse infection model. Ob also reduces the colistin dosage required for effective treatment of infections caused by colistin-susceptible bacteria, thereby reducing the toxicity of the drug regimen. Furthermore, Ob acts synergistically with colistin in eradicating multidrug-tolerant persisters of Gram-negative bacteria in vitro. Functional studies and microscopy assays confirm that the synergistic antimicrobial effect exhibited by the Ob and colistin involves permeabilizing the bacterial cell membrane, dissipating proton motive force and suppressing efflux pumps, resulting in membrane damages, cytosol leakage and eventually bacterial cell death. Our findings suggest that Ob is a colistin adjuvant which can restore the clinical value of colistin in combating life-threatening, multidrug resistant Gram-negative pathogens.


Assuntos
Colistina , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Compostos de Amônio Quaternário , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Sinergismo Farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário/farmacologia
20.
Microbiol Spectr ; 10(3): e0252821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604148

RESUMO

A plasmid that harbored the virulence factors highly like those of the virulence plasmid commonly found in clinical hypervirulent Klebsiella pneumoniae strains was detected in a foodborne Escherichia coli strain EC1108 and designated p1108-IncFIB. This virulent-like plasmid was found to be common in E. coli from various sources. To understand the contribution of this plasmid to the virulence of E. coli, plasmid p1108-IncFIB in strain EC1108 was first cured to generate strain EC1108-PC. The virulence plasmid p15WZ-82_Vir in Klebsiella pneumoniae strain 15WZ-82 was then transmitted to EC1108-PC to produce the transconjugant, EC1108-PC-TC to assess the contribution of this virulence plasmid to the virulence level of E. coli. During the process of conjugation, p15WZ-82_Vir was found to be evolved into p15WZ-82_int, which underwent homologous recombination with a plasmid encoding a carbapenemase gene, blaNDM-1, p1108-NDM, in EC1108-PC. Comparison between the level of virulence in the EC1108, EC1108-PC-TC, and EC1108-PC through serum and macrophage resistance assay, as well as animal experiments, confirmed that plasmid p1108-IncFIB encoded a high level of virulence in E. coli, yet the fusion plasmid derived from p15WZ-82_Vir did not encode virulence but instead imposed a high fitness cost in the E. coli strain EC1108-PC-TC. These findings indicate that E. coli strains carrying the virulence plasmid p1108-IncFIB in multidrug-resistant (MDR) strains may also impose serious public health threats like that of hypervirulent Klebsiella pneumoniae strains harboring the p15WZ-82_Vir plasmid. IMPORTANCE Acquisition of pLVPK-like virulence plasmid by Klebsiella pneumoniae converts it to hypervirulent K. pneumoniae (HvKP), which has become one of the most important clinical bacterial pathogens. The potential of transmission of this virulence plasmid and its contribution to the virulence of other Enterobacteriaceae, such as E. coli, are not clear yet. In this study, we showed that pLVPK-like virulence plasmid exhibited fitness costs and did not contribute to the virulence in E. coli. However, we identified a novel virulence plasmid, p1108-IncFIB, that encodes similar siderophore genes as those of pLVPK from a foodborne E. coli strain and showed that p1108-IncFIB encoded a high level of virulence in E. coli. BLAST of E. coli genomes from GenBank showed that these siderophore genes were widespread in clinical E. coli strains. Further studies are warranted to understand the impact of this plasmid in the control of clinical infections caused by E. coli.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Animais , Antibacterianos , Escherichia coli/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Sideróforos , Virulência/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...