Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(W1): W55-W59, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29733393

RESUMO

CSAR-web is a web-based tool that allows the users to efficiently and accurately scaffold (i.e. order and orient) the contigs of a target draft genome based on a complete or incomplete reference genome from a related organism. It takes as input a target genome in multi-FASTA format and a reference genome in FASTA or multi-FASTA format, depending on whether the reference genome is complete or incomplete, respectively. In addition, it requires the users to choose either 'NUCmer on nucleotides' or 'PROmer on translated amino acids' for CSAR-web to identify conserved genomic markers (i.e. matched sequence regions) between the target and reference genomes, which are used by the rearrangement-based scaffolding algorithm in CSAR-web to order and orient the contigs of the target genome based on the reference genome. In the output page, CSAR-web displays its scaffolding result in a graphical mode (i.e. scalable dotplot) allowing the users to visually validate the correctness of scaffolded contigs and in a tabular mode allowing the users to view the details of scaffolds. CSAR-web is available online at http://genome.cs.nthu.edu.tw/CSAR-web.


Assuntos
Mapeamento de Sequências Contíguas , Genoma/genética , Internet , Software , Algoritmos , Biologia Computacional/métodos , Genômica/métodos , Análise de Sequência de DNA
2.
BMC Syst Biol ; 12(Suppl 9): 139, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30598087

RESUMO

BACKGROUND: One of the important steps in the process of assembling a genome sequence from short reads is scaffolding, in which the contigs in a draft genome are ordered and oriented into scaffolds. Currently, several scaffolding tools based on a single reference genome have been developed. However, a single reference genome may not be sufficient alone for a scaffolder to generate correct scaffolds of a target draft genome, especially when the evolutionary relationship between the target and reference genomes is distant or some rearrangements occur between them. This motivates the need to develop scaffolding tools that can order and orient the contigs of the target genome using multiple reference genomes. RESULTS: In this work, we utilize a heuristic method to develop a new scaffolder called Multi-CSAR that is able to accurately scaffold a target draft genome based on multiple reference genomes, each of which does not need to be complete. Our experimental results on real datasets show that Multi-CSAR outperforms other two multiple reference-based scaffolding tools, Ragout and MeDuSa, in terms of many average metrics, such as sensitivity, precision, F-score, genome coverage, NGA50, scaffold number and running time. CONCLUSIONS: Multi-CSAR is a multiple reference-based scaffolder that can efficiently produce more accurate scaffolds of a target draft genome by referring to multiple complete and/or incomplete genomes of related organisms. Its stand-alone program is available for download at https://github.com/ablab-nthu/Multi-CSAR.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/métodos , Heurística
3.
Bioinformatics ; 34(1): 109-111, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968788

RESUMO

Summary: Advances in next generation sequencing have generated massive amounts of short reads. However, assembling genome sequences from short reads still remains a challenging task. Due to errors in reads and large repeats in the genome, many of current assembly tools usually produce just collections of contigs whose relative positions and orientations along the genome being sequenced are still unknown. To address this issue, a scaffolding process to order and orient the contigs of a draft genome is needed for completing the genome sequence. In this work, we propose a new scaffolding tool called CSAR that can efficiently and more accurately order and orient the contigs of a given draft genome based on a reference genome of a related organism. In particular, the reference genome required by CSAR is not necessary to be complete in sequence. Our experimental results on real datasets have shown that CSAR outperforms other similar tools such as Projector2, OSLay and Mauve Aligner in terms of average sensitivity, precision, F-score, genome coverage, NGA50 and running time. Availability and implementation: The program of CSAR can be downloaded from https://github.com/ablab-nthu/CSAR. Contact: hchiu@mail.ncku.edu.tw or cllu@cs.nthu.edu.tw. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Bactérias/genética , Genoma , Genômica/métodos , Humanos
4.
BMC Bioinformatics ; 18(Suppl 16): 574, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297283

RESUMO

BACKGROUND: RNA molecules have been known to play a variety of significant roles in cells. In principle, the functions of RNAs are largely determined by their three-dimensional (3D) structures. As more and more RNA 3D structures are available in the Protein Data Bank (PDB), a bioinformatics tool, which is able to rapidly and accurately search the PDB database for similar RNA 3D structures or substructures, is helpful to understand the structural and functional relationships of RNAs. RESULTS: Since its first release in 2011, R3D-BLAST has become a useful tool for searching the PDB database for similar RNA 3D structures and substructures. It was implemented by a structural-alphabet (SA)-based method, which utilizes an SA with 23 structural letters to encode RNA 3D structures into one-dimensional (1D) structural sequences and applies BLAST to the resulting structural sequences for searching similar substructures of RNAs. In this study, we have upgraded R3D-BLAST to develop a new web server named R3D-BLAST2 based on a higher quality SA newly constructed from a representative and sufficiently non-redundant list of RNA 3D structures. In addition, we have modified the kernel program in R3D-BLAST2 so that it can accept an RNA structure in the mmCIF format as an input. The results of our experiments on a benchmark dataset have demonstrated that R3D-BLAST2 indeed performs very well in comparison to its earlier version R3D-BLAST and other similar tools RNA FRABASE, FASTR3D and RAG-3D by searching a larger number of RNA 3D substructures resembling those of the input RNA. CONCLUSIONS: R3D-BLAST2 is a valuable BLAST-like search tool that can more accurately scan the PDB database for similar RNA 3D substructures. It is publicly available at http://genome.cs.nthu.edu.tw/R3D-BLAST2/ .


Assuntos
Conformação de Ácido Nucleico , RNA/química , Ferramenta de Busca , Software , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Ácidos Nucleicos , Nucleotídeos/genética , Fatores de Tempo , Interface Usuário-Computador
5.
Nucleic Acids Res ; 44(W1): W328-32, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185896

RESUMO

Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/.


Assuntos
Modelos Estatísticos , Conformação Molecular , Conformação de Ácido Nucleico , RNA/química , Interface Usuário-Computador , Algoritmos , Pareamento de Bases , Gráficos por Computador , Internet , Motivos de Nucleotídeos , Células Procarióticas/metabolismo , RNA/genética , Dobramento de RNA , Alinhamento de Sequência , Análise de Sequência de RNA , Homologia de Sequência do Ácido Nucleico
6.
BMC Bioinformatics ; 17(Suppl 17): 469, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28155633

RESUMO

BACKGROUND: A draft genome assembled by current next-generation sequencing techniques from short reads is just a collection of contigs, whose relative positions and orientations along the genome being sequenced are unknown. To further obtain its complete sequence, a contig scaffolding process is usually applied to order and orient the contigs in the draft genome. Although several single reference-based scaffolding tools have been proposed, they may produce erroneous scaffolds if there are rearrangements between the target and reference genomes or their phylogenetic relationship is distant. This may suggest that a single reference genome may not be sufficient to produce correct scaffolds of a draft genome. RESULTS: In this study, we design a simple heuristic method to further revise our single reference-based scaffolding tool CAR into a new one called Multi-CAR such that it can utilize multiple complete genomes of related organisms as references to more accurately order and orient the contigs of a draft genome. In practical usage, our Multi-CAR does not require prior knowledge concerning phylogenetic relationships among the draft and reference genomes and libraries of paired-end reads. To validate Multi-CAR, we have tested it on a real dataset composed of several prokaryotic genomes and also compared its accuracy performance with other multiple reference-based scaffolding tools Ragout and MeDuSa. Our experimental results have finally shown that Multi-CAR indeed outperforms Ragout and MeDuSa in terms of sensitivity, precision, genome coverage, scaffold number and scaffold N50 size. CONCLUSIONS: Multi-CAR serves as an efficient tool that can more accurately order and orient the contigs of a draft genome based on multiple reference genomes. The web server of Multi-CAR is freely available at http://genome.cs.nthu.edu.tw/Multi-CAR/ .


Assuntos
Mapeamento de Sequências Contíguas/métodos , Análise de Sequência de DNA/métodos , Software , Bactérias/genética , Genoma Bacteriano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
BMC Bioinformatics ; 15: 381, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25431302

RESUMO

BACKGROUND: Next generation sequencing technology has allowed efficient production of draft genomes for many organisms of interest. However, most draft genomes are just collections of independent contigs, whose relative positions and orientations along the genome being sequenced are unknown. Although several tools have been developed to order and orient the contigs of draft genomes, more accurate tools are still needed. RESULTS: In this study, we present a novel reference-based contig assembly (or scaffolding) tool, named as CAR, that can efficiently and more accurately order and orient the contigs of a prokaryotic draft genome based on a reference genome of a related organism. Given a set of contigs in multi-FASTA format and a reference genome in FASTA format, CAR can output a list of scaffolds, each of which is a set of ordered and oriented contigs. For validation, we have tested CAR on a real dataset composed of several prokaryotic genomes and also compared its performance with several other reference-based contig assembly tools. Consequently, our experimental results have shown that CAR indeed performs better than all these other reference-based contig assembly tools in terms of sensitivity, precision and genome coverage. CONCLUSIONS: CAR serves as an efficient tool that can more accurately order and orient the contigs of a prokaryotic draft genome based on a reference genome. The web server of CAR is freely available at http://genome.cs.nthu.edu.tw/CAR/ and its stand-alone program can also be downloaded from the same website.


Assuntos
Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Mapeamento de Sequências Contíguas/métodos , Rearranjo Gênico , Genoma , Análise de Sequência de DNA/métodos , Software , Algoritmos , Células Procarióticas
8.
BMC Bioinformatics ; 14 Suppl 5: S9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734866

RESUMO

The techniques of next generation sequencing allow an increasing number of draft genomes to be produced rapidly in a decreasing cost. However, these draft genomes usually are just partially sequenced as collections of unassembled contigs, which cannot be used directly by currently existing algorithms for studying their genome rearrangements and phylogeny reconstruction. In this work, we study the one-sided block (or contig) ordering problem with weighted reversal and block-interchange distance. Given a partially assembled genome π and a completely assembled genome σ, the problem is to find an optimal ordering to assemble (i.e., order and orient) the contigs of π such that the rearrangement distance measured by reversals and block-interchanges (also called generalized transpositions) with the weight ratio 1:2 between the assembled contigs of π and σ is minimized. In addition to genome rearrangements and phylogeny reconstruction, the one-sided block ordering problem particularly has a useful application in genome resequencing, because its algorithms can be used to assemble the contigs of a draft genome π based on a reference genome σ. By using permutation groups, we design an efficient algorithm to solve this one-sided block ordering problem in Oδn time, where n is the number of genes or markers and δ is the number of used reversals and block-interchanges. We also show that the assembly of the partially assembled genome can be done in On time and its weighted rearrangement distance from the completely assembled genome can be calculated in advance in On time. Finally, we have implemented our algorithm into a program and used some simulated datasets to compare its accuracy performance to a currently existing similar tool, called SIS that was implemented by a heuristic algorithm that considers only reversals, on assembling the contigs in draft genomes based on their reference genomes. Our experimental results have shown that the accuracy performance of our program is better than that of SIS, when the number of reversals and transpositions involved in the rearrangement events between the complete genomes of π and σ is increased. In particular, if there are more transpositions involved in the rearrangement events, then the gap of accuracy performance between our program and SIS is increasing.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/métodos , Genômica/métodos , Genoma , Filogenia
9.
Nucleic Acids Res ; 39(Web Server issue): W45-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21624889

RESUMO

R3D-BLAST is a BLAST-like search tool that allows the user to quickly and accurately search against the PDB for RNA structures sharing similar substructures with a specified query RNA structure. The basic idea behind R3D-BLAST is that all the RNA 3D structures deposited in the PDB are first encoded as 1D structural sequences using a structural alphabet of 23 distinct nucleotide conformations, and BLAST is then applied to these 1D structural sequences to search for those RNA substructures whose 1D structural sequences are similar to that of the query RNA substructure. R3D-BLAST takes as input an RNA 3D structure in the PDB format and outputs all substructures of the hits similar to that of the query with a graphical display to show their structural superposition. In addition, each RNA substructure hit found by R3D-BLAST has an associated E-value to measure its statistical significance. R3D-BLAST is now available online at http://genome.cs.nthu.edu.tw/R3D-BLAST/ for public access.


Assuntos
RNA/química , Software , Algoritmos , Bases de Dados de Proteínas , Conformação de Ácido Nucleico , RNA de Transferência/química
10.
BMC Genomics ; 12 Suppl 3: S26, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22369173

RESUMO

BACKGROUND: Genome rearrangements are studied on the basis of genome-wide analysis of gene orders and important in the evolution of species. In the last two decades, a variety of rearrangement operations, such as reversals, transpositions, block-interchanges, translocations, fusions and fissions, have been proposed to evaluate the differences between gene orders in two or more genomes. Usually, the computational studies of genome rearrangements are formulated as problems of sorting permutations by rearrangement operations. RESULT: In this article, we study a sorting problem by cut-circularize-linearize-and-paste (CCLP) operations, which aims to find a minimum number of CCLP operations to sort a signed permutation representing a chromosome. The CCLP is a genome rearrangement operation that cuts a segment out of a chromosome, circularizes the segment into a temporary circle, linearizes the temporary circle as a linear segment, and possibly inverts the linearized segment and pastes it into the remaining chromosome. The CCLP operation can model many well-known rearrangements, such as reversals, transpositions and block-interchanges, and others not reported in the biological literature. In addition, it really occurs in the immune response of higher animals. To distinguish those CCLP operations from the reversal, we call them as non-reversal CCLP operations. In this study, we use permutation groups in algebra to design an O(δn) time algorithm for solving the weighted sorting problem by CCLP operations when the weight ratio between reversals and non-reversal CCLP operations is 1:2, where n is the number of genes in the given chromosome and δ is the number of needed CCLP operations. CONCLUSION: The algorithm we propose in this study is very simple so that it can be easily implemented with 1-dimensional arrays and useful in the studies of phylogenetic tree reconstruction and human immune response to tumors.


Assuntos
Algoritmos , Biologia Computacional/métodos , Rearranjo Gênico , Genoma Humano , Humanos
11.
Nucleic Acids Res ; 38(Web Server issue): W340-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20507908

RESUMO

iPARTS is an improved web server for aligning two RNA 3D structures based on a structural alphabet (SA)-based approach. In particular, we first derive a Ramachandran-like diagram of RNAs by plotting nucleotides on a 2D axis using their two pseudo-torsion angles eta and . Next, we apply the affinity propagation clustering algorithm to this eta- plot to obtain an SA of 23-nt conformations. We finally use this SA to transform RNA 3D structures into 1D sequences of SA letters and continue to utilize classical sequence alignment methods to compare these 1D SA-encoded sequences and determine their structural similarities. iPARTS takes as input two RNA 3D structures in the PDB format and outputs their global alignment (for determining overall structural similarity), semiglobal alignments (for detecting structural motifs or substructures), local alignments (for finding locally similar substructures) and normalized local structural alignments (for identifying more similar local substructures without non-similar internal fragments), with graphical display that allows the user to visually view, rotate and enlarge the superposition of aligned RNA 3D structures. iPARTS is now available online at http://bioalgorithm.life.nctu.edu.tw/iPARTS/.


Assuntos
RNA/química , Software , Algoritmos , Internet , Modelos Moleculares , Conformação de Ácido Nucleico , Curva ROC , Alinhamento de Sequência
12.
Nucleic Acids Res ; 37(Web Server issue): W287-95, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19435878

RESUMO

FASTR3D is a web-based search tool that allows the user to fast and accurately search the PDB database for structurally similar RNAs. Currently, it allows the user to input three types of queries: (i) a PDB code of an RNA tertiary structure (default), optionally with specified residue range, (ii) an RNA secondary structure, optionally with primary sequence, in the dot-bracket notation and (iii) an RNA primary sequence in the FASTA format. In addition, the user can run FASTR3D with specifying additional filtering options: (i) the released date of RNA structures in the PDB database, and (ii) the experimental methods used to determine RNA structures and their least resolutions. In the output page, FASTR3D will show the user-queried RNA molecule, as well as user-specified options, followed by a detailed list of identified structurally similar RNAs. Particularly, when queried with RNA tertiary structures, FASTR3D provides a graphical display to show the structural superposition of the query structure and each of identified structures. FASTR3D is now available online at http://bioalgorithm.life.nctu.edu.tw/FASTR3D/.


Assuntos
RNA/química , Software , Gráficos por Computador , Bases de Dados Genéticas , Modelos Moleculares , Conformação de Ácido Nucleico , RNA não Traduzido/química , Interface Usuário-Computador
13.
Biol Pharm Bull ; 31(8): 1547-51, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18670087

RESUMO

In an effort to develop potent cytotoxic inhibitors of cyclooxygenase (COX), a series of cytotoxic 3-alkylaminopropoxy-9,10-anthraquinone derivatives was screened to evaluate their antiplatelet effect on washed rabbit platelets and human platelet-rich plasma (PRP). Thrombin, arachidonic acid (AA), collagen, and platelet-activating factor (PAF) induced platelet aggregations were potently inhibited by compounds 1, 2, and 3 (each at 300 microM). Of the compounds tested in human PRP, compounds 1, 8, and 10 showed significant inhibition of primary and secondary aggregation induced by epinephrine and had a weak inhibitory effect on cyclooxygenase-1 (COX-1). Molecular docking studies revealed that compounds, 1, 8, and 10 were bound in the active sites of COX-1. This indicated that the antiplatelet effect of these three compounds was partially mediated through the suppression of COX-1 activity and reduced thromboxane formation. It is concluded that the cytotoxic compounds 1, 8, and 10 may interfere the conversion of arachidonic acid to prostaglandin (PG)H(2) in the active site of COX-1.


Assuntos
Antraquinonas/síntese química , Antraquinonas/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Aspirina/farmacologia , Ciclo-Oxigenase 1/metabolismo , Interpretação Estatística de Dados , Epinefrina/farmacologia , Técnicas In Vitro , Modelos Moleculares , Agregação Plaquetária/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Coelhos , Especificidade por Substrato
14.
Acta Pharmacol Sin ; 28(12): 2027-32, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18031619

RESUMO

AIM: To screen the selective inhibitors for human cyclooxygenase-2 ((h)COX-2) utilizing molecular simulation. METHODS: Eight xanthone derivatives, compounds A-H, were employed by the structure-based research methodology. Resveratrol and NS-398 were selected as the control compounds for COX-1 and COX-2, respectively. The docking results were scored and the interaction energies of the complexes were calculated by CHARMm forcefield. RESULTS: NS-398 could not dock into the active site of COX-1. However, resveratrol, the specific selective compound for COX-1, gained lower interaction energy while docked in COX-1. The lower interaction energies were investigated, while compound B and F were docked into the catalytic sites of COX-1 and COX-2, respectively. Compound A, 1,3,6,7-tetrahydroxyxanthone, revealed high inhibitory potency to both COX-1 and COX-2. CONCLUSION: The conformations of the docking would influence the values of interaction energies. The hydrogen bond could also increase the stability of the whole complex, which might suggest that compound B had a suitable conformation in the tunnel-like active site of COX-1. Compound F, a potent agent for COX-2, revealed a strong hydrogen bond with Ser516 in human COX-2 to form a stable complex.


Assuntos
Ciclo-Oxigenase 2/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Xantonas/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...