Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134691, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788584

RESUMO

Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.


Assuntos
Adenosina , Neurônios Dopaminérgicos , Ferroptose , Camundongos Endogâmicos C57BL , Nanopartículas , Doença de Parkinson , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ferroptose/efeitos dos fármacos , Adenosina/análogos & derivados , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , RNA , Metilação de RNA
2.
Carbohydr Polym ; 335: 122042, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616072

RESUMO

Manufacturing flexible sensors with prominent mechanical properties, multifunctional sensing abilities, and remarkable self-healing capabilities remains a difficult task. In this study, a novel vanillin-modified polyacrylate (VPA), which is capable of forming green dynamic covalent crosslinking with chitosan (CS), was synthesized. The synthesized VPA was combined with mesoporous silica-modified MXene (AMS-MXene) and covalently cross-linked simultaneously with CS, resulting in the formation of a flexible composite conductive film designed for dual-mode sensors. Due to the multidimensional structure formed by the mesoporous silica and MXene layers, the resulting composite film is not only suitable for strain sensing but also excels in gas response sensing. Most importantly, the composite films demonstrate a remarkable self-healing capability through reversible dynamic covalent bonds, specifically Schiff base bonds, coupled with multiple hydrogen bonding interactions with AMS-MXene. This robust self-repair functionality remains effective even at a low temperature of 30 °C. Additionally, the synergistic antibacterial effect exerted by vanillin and CS in the film can endow the composite sensor with excellent antimicrobial properties. This multifunctional composite film holds tremendous potential for applications in green flexible wearable sensors. Furthermore, it can show diverse applications in a wide variety of fields, driving advances in wearable technology and human health monitoring.

3.
Food Sci Biotechnol ; 33(7): 1603-1614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623432

RESUMO

This study used glucose, fructose, maltose and dextran to explore the effects of different carbohydrates on the Maillard reaction of casein phosphopeptides (CPP). The color parameter results showed that heating time from 1 to 5 h led to brown color, which was consistent with the observed increased in browning intensity. Fourier transform infrared spectroscopy results verified that four carbohydrates reacted with CPP to produce Maillard conjugates. Fluorescence spectroscopy showed that the Maillard reaction changed the tertiary structure of CPP by decreasing the intrinsic fluorescence intensity and surface hydrophobicity compared with the CPP-carbohydrate mixture. At the same time, the Maillard reaction effectively improved the emulsifying properties, reducing power and DPPH radical scavenging activity of CPP. Furthermore, this study also found that glucose and fructose improved CPP more than maltose and dextran. Therefore, monosaccharides have good potential in modifying CPP via the Maillard reaction.

4.
Opt Lett ; 49(5): 1349-1352, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427010

RESUMO

Due to the intrinsic polarized emission property, polarized emissive materials with anisotropic nanostructures are expected to be potential substitutes for polarizers. Herein, by the template-assisted strategy, well-aligned lead-free metal halide Cs3Cu2I5 nanowire (NW) arrays are fabricated by evaporating the precursor ink in the anodic aluminum oxide (AAO) for polarized emission. The Cs3Cu2I5/AAO composite film emits highly polarized light with a degree of polarization (DOP) of 0.50. Furthermore, by changing the molar ratio of CsI/CuI, the stability of Cs3Cu2I5 precursor inks is improved. Finally, an ultraviolet (UV) light-emitting diode (LED) is adopted to pump the composite film to achieve a blue LED device. The reported Cs3Cu2I5/AAO composite film with highly polarized light emissions will have great potential for polarized emission applications such as liquid crystal display backlights, waveguides, and lasers.

5.
ACS Appl Mater Interfaces ; 16(14): 18030-18039, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554081

RESUMO

With the fast development of new science and technology, wearable devices are in great demand in modern human daily life. However, the energy problem is a long-lasting issue to achieve real smart, wearable, and portable devices. Flexible thermoelectric generators (TEGs) based on thermoelectric conversion systems can convert body waste heat into electricity with excellent flexibility and wearability, which shows a new direction to solving this issue. Here in this work, polyethylenimine (PEI) and gold nanoparticles (Au NPs) twin surface-modified carbon nanotube fibers (CNTFs) were designed and prepared to fabricate thermoelectric textiles (TET) with high performance, good air stability, and high-efficiency power generation. To better utilize the heat emitted by the human body, microencapsulated phase change materials (MPCM) were coated on the hot end of the TET to achieve the phase-transition-promoted TET. MPCM-coated TET device could generate 25.7% more energy than the untreated control device, which indicates the great potential of the phase-transition-promoted TET.

6.
Int J Biol Macromol ; 263(Pt 1): 130285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373571

RESUMO

Phase change microcapsules are known for their latent heat storage capability. However, the efficient absorption and utilization of solar energy by these microcapsules remains a significant challenge. In this study, we successfully prepared composite phase change microcapsules containing ZnO-Ag nanospheres, chitosan, and paraffin. These microcapsules demonstrated remarkable photothermal conversion efficiency. ZnO was found to effectively absorb ultraviolet light, while the plasmonic resonance of Ag was utilized to absorb and make use of light energy in the visible region. Moreover, due to the synergistic absorption and reflection of electromagnetic waves by ZnO-Ag nanoparticles and graphene, the well-dispersed chitosan/ZnO-Ag composite microcapsules and graphene in the fabric coating demonstrated exceptional electromagnetic shielding performance. In addition, the coated fabric based on composite microcapsules exhibited excellent antibacterial properties, effectively inhibiting the growth of bacteria such as S. aureus and E. coli. This antibacterial performance adds to their potential applications in various fields. These multifunctional phase change microcapsules offer vast potential for the effective utilization of solar energy, serving as efficient photothermal conversion and energy storage materials.


Assuntos
Quitosana , Grafite , Energia Solar , Óxido de Zinco , Óxido de Zinco/farmacologia , Escherichia coli , Staphylococcus aureus , Cápsulas , Antibacterianos/farmacologia
7.
ACS Appl Mater Interfaces ; 15(19): 23136-23145, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141507

RESUMO

A flame retardant gel electrolyte (FRGE) is deemed as one of the most promising electrolytes to relieve the problems of safety hazards and interfacial incompatibility of Li metal batteries. Herein, a novel solvent triethyl 2-fluoro-2-phosphonoacetate (TFPA) with outstanding flame retardancy is introduced in the polymer skeleton synthesized by in situ polymerization of the monomer polyethylene glycol dimethacrylate (PEGDMA) and the cross-linker pentaerythritol tetraacrylate (PETEA). The FRGE exhibits superb interfacial compatibility with Li metal anodes and inhibits uncontrolled Li dendrite growth. This can be ascribed to the restriction of free phosphate molecules by the polymer skeleton, thus realizing a stable cycling performance over 500 h at 1 mA cm-2 and 1 mAh cm-2 in the Li||Li symmetric cell. In addition, the high ionic conductivity (3.15 mS cm-1) and Li+ transference number (0.47) of the FRGE further enhance the electrochemical performance of the correspondent battery. As a result, the LiFePO4|FRGE|Li cell exhibits excellent long-term cycling life with a capacity retention of 94.6% after 700 cycles. This work points to a new pathway for the practical development of high-safety and high-energy-density Li metal-based batteries.

8.
Cell Stress Chaperones ; 28(3): 265-274, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881375

RESUMO

With global warming, heat stress has become a primary factor that compromises the health and milk quality of dairy cows. Here, we investigated the function and underlying regulatory mechanism of miR-27a-3p in bovine mammary epithelial cells (BMECs) under heat-stress conditions. The current study showed that miR-27a-3p could prevent heat stress-induced BMEC oxidative stress and mitochondrial damage by regulating the balance between mitochondrial fission and fusion processes. Importantly, we found that miR-27a-3p could increase cell proliferation under heat stress conditions by regulating the MEK/ERK pathway and cyclin D1/E1. Interestingly, miR-27a-3p is also involved in the regulation of milk protein synthesis-related protein expression, such as CSN2 and ELF5. Inhibition of the MEK/ERK signaling pathway by AZD6244 blocked the regulatory function of miR-27a-3p in cell proliferation and milk protein synthesis in BMECs under heat stress conditions. Our findings demonstrated that miR-27a-3p protects BMECs from heat stress-induced oxidative stress and mitochondrial damage through the MEK/ERK pathway, thereby promoting BMECs proliferation and lactation in dairy cows. The potential regulatory mechanism of miR-27a-3p in attenuating heat stress-induced apoptosis and lactation defect in BMECs.


Assuntos
MicroRNAs , Feminino , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Leite , Sistema de Sinalização das MAP Quinases , Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
9.
Cell Tissue Bank ; 24(1): 221-230, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35896934

RESUMO

Feeder cells play important roles in In-vitro culture of stem cells. However, the preparation protocol of feeder cells produced by bovine embryonic fibroblast cells (bEFs) is still lack. In this study, the preparation of bEF-feeder by Mitomycin C was optimized with different concentrations and treatment time. The cell viability of bEFs was detected by CCK8 and 5-Ethynyl-2'-deoxyuridine. The growth of bESCs in each bEFs-feeder group was assessed by alkaline phosphatase staining and CCK8. Quantitative real time PCR was used to detect the mRNA expression of pluripotency-related genes of bESCs. Results showed that the proliferation of bEFs was significantly repressed while bEFs were treated with 14 ug/mL or 16 ug/mL Mitomycin C for 3 h, and the cell viability within 2-4 days after treatment was consistent with the 1st day. The numbers of bESCs clones in bEF-feeder treated with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h were significantly higher than that in bEF-feeder treated with 8 µg/mL Mitomycin C for 8 h or bEFs treated with 6 µg/mL Mitomycin C for 9 h. The mRNA expression of pluripotency-related genes in bESCs cultured by bEF-feeder were higher than the MEF-feeder, the clone morphology of bESCs cultured in bEF-feeder was rounder and sharper than the MEF-feeder. In conclusion, the bEF-feeder prepared with 14 µg/mL Mitomycin C for 3 h or 16 µg/mL Mitomycin C for 3 h could effectively maintains the growth of bESCs, and bEF-feeder is more suitable for bESCs culture than the MEF-feeder.


Assuntos
Técnicas de Cultura de Células , Células Alimentadoras , Fibroblastos , Mitomicina , Células-Tronco Pluripotentes , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Mitomicina/farmacologia , Células-Tronco Pluripotentes/citologia , Animais
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362094

RESUMO

Sirtuin 4 (SIRT4), a member of the SIRT family, has been reported to be a key factor involved in antioxidant defense in mitochondria. This study aimed to explore the potential molecular mechanism via which SIRT4 regulates heat stress-induced oxidative stress and lactoprotein synthesis in bovine mammary epithelial cells (BMECs). Our results showed that SIRT4 was significantly decreased in heat stressed mammary tissue. Depletion of SIRT4 in BMECs induced the generation of ROS, which, as exhibited by the decreased activity of antioxidant enzymes, changed mitochondrial morphology through mediating protein and mRNA levels related to mitochondrial fission and fusion. Moreover, we found that depletion of SIRT4 or stress conditions inhibited the expression of milk proteins, as well as lipid and glucose synthesis-related genes, and activated the AMPK/mTOR signaling pathway. Increased SIRT4 expression was found to have the opposite effect. However, blocking the AMPK/mTOR signaling pathway could inhibit the regulatory function of SIRT4 in milk synthesis-related gene expression. In summary, our results suggest that SIRT4 may play critical roles in maintaining mammary gland function by regulating the AMPK/mTOR signaling pathway in dairy cows, indicating that SIRT4 may be a potential molecular target for curing heat stress-induced BMEC injury and low milk production in dairy cows.


Assuntos
Proteínas Quinases Ativadas por AMP , Antioxidantes , Feminino , Bovinos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Transdução de Sinais , Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Serina-Treonina Quinases TOR/metabolismo , Glândulas Mamárias Animais/metabolismo
11.
Genes (Basel) ; 13(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36292673

RESUMO

MicroRNAs (miRNAs) play key roles in sperm as the regulatory factors involved in fertility and subsequent early embryonic development. Bta-miR-6531 is specifically a highly enriched miRNA in low-motility sperms in previous study. To investigate the mechanism of bta-miR-6531, 508 shared target genes of bta-miR-6531 were predicted using two miRNA target databases (TargetScan7 and miRWalk). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the calcium and cAMP signaling pathways were the most enriched of the target genes. A dual-luciferase assay indicated that bta-miR-6531 targeted ATP2A2 mRNA by binding to the coding sequence region. In bovine Leydig cells, bta-miR-6531 overexpression affected the intracellular calcium concentration by restraining ATP2A2 expression. Moreover, we observed high calcium concentrations and high ATP2A2 protein levels in high-motility sperm compared with those in low-motility sperms. Furthermore, high-linkage single-nucleotide polymorphisms (SNPs) of the pre-bta-miR-6531 sequence were identified that related to sperm traits. Genotype TCTC of bta-miR-6531 showed high sperm motility and density and low deformity rate in Holstein bulls. However, the mutation in pre-miR-6531 did not significantly affect mature bta-miR-6531 expression in the sperm or cell models. Our results demonstrate that bta-miR-6531 might involve in sperm motility regulation by targeting ATP2A2 of the calcium signaling pathway in bovine spermatozoa.


Assuntos
Cálcio , MicroRNAs , Bovinos , Masculino , Animais , Motilidade dos Espermatozoides/genética , Células Intersticiais do Testículo/metabolismo , Sêmen/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
12.
Mol Biol Rep ; 49(10): 9297-9305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35945402

RESUMO

BACKGROUND: Exosomes are involved in intercellular communication, affecting many physiological and pathological process. The present study evaluated the effects of serum exosomes on the function of bovine mammary epithelial cells (BMECs) and milk synthesis under heat stress. METHODS AND RESULTS: We cultured the BMECs in fetal bovine serum (FBS) or exosome-free FBS medium and examined, their viability using CCK-8 kit. The results showed that culturing the cells in an exosome-free medium decreased viability and increased the levels of reactive oxygen species. The BMECs cultured in the exosome-free medium had reduced mitochondrial membrane potential, decreased manganese superoxide dismutase activity, and disrupted mitochondrial dynamics. They exhibited apoptosis due to upregulated Drp1, Fis1, Bax and HSP70. Lastly, we observed downregulation of milk fat and lactoprotein-related genes: mTOR, PPARγ, p-mTOR and ADD1 and SREBP1, ELF5, and CSN2, respectively, after culturing the cells in an exosome-free medium. These negative effects of the exosome-free medium on the BMECs could be further reinforced under heat stress. CONCLUSION: Our results demonstrated that exosomes from serum are critical for maintaining the normal function of BMECs.


Assuntos
Glândulas Mamárias Animais , PPAR gama , Animais , Células Cultivadas , Células Epiteliais , Resposta ao Choque Térmico , Espécies Reativas de Oxigênio/farmacologia , Soroalbumina Bovina/farmacologia , Sincalida/farmacologia , Superóxido Dismutase , Serina-Treonina Quinases TOR , Proteína X Associada a bcl-2
13.
ACS Appl Mater Interfaces ; 14(18): 21509-21520, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500100

RESUMO

Flexible electronics have aroused great interest over the past few years due to their unique advantages of being wearable and lightweight. Introducing the self-healing function into wearable electronics will contribute to the practical applications of wearable electronics by prolonging the devices' lifetime. In this study, a flexible essential oil (EO)-loaded mesoporous silica (EO@AMS)/polyacrylate hybrid hydrogel with superb self-healing and antibacterial properties was prepared. The prepared hybrid hydrogel was found to have excellent piezoresistive sensing performance, which could be particularly suitable for human vital activity monitoring. Benefiting from the strong ionic bonding and multiple hydrogen bonds between polyacrylate and EO@AMS, the hybrid hydrogel could repair its damaged areas with restored sensing and mechanical properties, which suggested excellent self-healing ability. In addition, this hybrid hydrogel, when applied in wearable devices, was found to have high antibacterial ability owing to the slow release of the lemon EO from AMS to kill bacteria. This promising self-healing and antibacterial hybrid hydrogel shows a promising application in wearable electronics for posture monitoring, human-computer interaction, and artificial intelligence.


Assuntos
Óleos Voláteis , Dispositivos Eletrônicos Vestíveis , Antibacterianos/farmacologia , Inteligência Artificial , Condutividade Elétrica , Humanos , Hidrogéis/química , Dióxido de Silício
14.
Funct Integr Genomics ; 22(1): 77-87, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839400

RESUMO

In summer, heat stress is one of the primary reasons for the compromised health and low milk productivity of dairy cows. Hyperthermia affects milk synthesis and secretion in the mammary glands of dairy cows. As molecules for intercellular communication, milk-derived exosomes carry genetic material, proteins, and lipids, playing a crucial role in mammary tissue growth and milk synthesis in dairy cows. The aim of this study was to explore the milk exosomal miRNA profile of heat-stressed and normal Holstein cows. We isolated and identified milk exosomes to screening for differentially expressed miRNAs using small RNA sequencing. Then, TargetScan and miRanda algorithms were used to predict the putative targets of the differentially expressed miRNAs, whereas GO and KEGG pathway enrichment analyses were performed for the differentially expressed miRNA-target genes. Our results showed that 215 miRNAs were significantly differentially expressed in heat-stressed milk exosomes, of which one was upregulated and 214 were significantly downregulated. GO and KEGG enrichment analyses indicated that differentially expressed miRNAs might play a role in apoptosis, autophagy, and the p38 MAPK pathway. qRT-PCR assay verified that the expression of miRNAs was consistent with the sequencing results, warranting further verification of their specific targets of action. In conclusion, changes in the miRNA expression profile of milk exosomes indicated the role of exosomal miRNAs in regulating heat stress resistance and apoptosis in dairy cows. Our results suggested that milk-derived exosomal miRNAs could increase mammary gland resistance to heat stress, thereby enhancing milk synthesis in dairy cows.


Assuntos
Exossomos , Resposta ao Choque Térmico , MicroRNAs , Leite/química , Animais , Bovinos , Biologia Computacional , Exossomos/genética , Feminino , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , MicroRNAs/genética
15.
ACS Appl Mater Interfaces ; 13(49): 59298-59309, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34872247

RESUMO

By designing and preparing multifunctional materials exhibiting self-healing ability, problems related to their durability outdoors can be solved. This study, inspired by the self-healing mechanism of natural creatures, successfully prepared a dual self-healing multifunctional coating using temperature stimuli-responsive multicompartment microcapsules. Phase change materials (PCMs) were employed to load multicompartment microcapsules that were produced through Pickering emulsion polymerization by applying hydrophobic materials encapsulated by titanium dioxide (TiO2) nanocapsules as Pickering emulsifiers. The multifunctional coating produced using microcapsules and self-healing waterborne polyurethane (WPU) exhibited thermal insulation and antireflection properties, which was attributed to the application of PCMs and TiO2, and it also achieved remarkable superhydrophobicity. Moreover, this coating exhibited the intrinsic and superficial dual self-healing ability, which was attributed to the release of hydrophobic materials from microcapsules and the self-healing ability of WPU. This study can be referenced to guide the fabrication of high-performance self-healing materials, and it can contribute to the long-term use of multifunctional coatings.

16.
Cell Death Discov ; 7(1): 304, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675216

RESUMO

With global warming, heat stress has become an important challenge for the global dairy industry. Sirtuin 3 (SIRT3), an important mitochondrial NAD+dependent decarboxylase and a major regulator of cellular energy metabolism and antioxidant defense, is integral to maintaining normal mitochondrial function. The aim of this study was to assess the protective effect of SIRT3 on damage to bovine mammary epithelial cells (BMECs) induced by heat stress and to explore its potential mechanism. Our results indicate that SIRT3 is significantly downregulated in heat-stressed mammary tissue and high-temperature-treated BMECs. SIRT3 knockdown significantly increased the expression of HSP70, Bax, and cleaved-caspase 3 and inhibited the production of antioxidases, thus promoting ROS production and cell apoptosis in BMECs. In addition, SIRT3 knockdown can aggravate mitochondrial damage by mediating the expression of genes related to mitochondrial fission and fusion, including dynamin-related protein 1, mitochondrial fission 1 protein, and mitochondrial fusion proteins 1and 2. In addition, SIRT3 knockdown substantially decreased AMPK phosphorylation in BMECs. In contrast, SIRT3 overexpression in high-temperature treatment had the opposite effect to SIRT3 knockdown in BMECs. SIRT3 overexpression reduced mitochondrial damage and weakened the oxidative stress response of BMECs induced by heat stress and promoted the phosphorylation of AMPK. Taken together, our results indicate that SIRT3 can protect BMECs from heat stress damage through the AMPK signaling pathway. Therefore, the reduction of oxidative stress by SIRT3 may be the primary molecular mechanism underlying resistance to heat stress in summer cows.

17.
Front Cell Dev Biol ; 9: 708980, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295902

RESUMO

Hexestrol (HES) is a synthetic non-steroidal estrogen that was widely used illegally to boost the growth rate in livestock production and aquaculture. HES can also be transferred to humans from treated animals and the environment. HES has been shown to have an adverse effect on ovarian function and oogenesis, but the potential mechanism has not been clearly defined. To understand the potential mechanisms regarding how HES affect female ovarian function, we assessed oocyte quality by examining the critical events during oocyte maturation. We found that HES has an adverse effect on oocyte quality, indicated by the decreased capacity of oocyte maturation and early embryo development competency. Specifically, HES-exposed oocytes exhibited aberrant microtubule nucleation and spindle assembly, resulting in meiotic arrest. In addition, HES exposure disrupted mitochondrial distribution and the balance of mitochondrial fission and fusion, leading to aberrant mitochondrial membrane potential and accumulation of reactive oxygen species. Lastly, we found that HES exposure can increase cytosolic Ca2+ levels and induce DNA damage and early apoptosis. In summary, these results demonstrate that mitochondrial dysfunction and perturbation of normal mitochondrial fission and fusion dynamics could be major causes of reduced oocyte quality after HES exposure.

18.
Carbohydr Polym ; 269: 118277, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294309

RESUMO

Citronellol (CI)-loaded, chitosan (CS)-enclosed dendritic mesoporous organosilica nanoparticles (CI@D-MONs@CS) are successfully fabricated. The synthesized CI@D-MONs@CS present spherical shape with the particle size of 424±24 nm in diameter and dendritic mesopores. CI loading ratio of CI@D-MONs@CS is about 12.42% from TGA analysis. CI release from CI@D-MONs@CS exhibits pH-redox dual responsiveness. More interesting, the axillary deodorant effect is investigated with Staphylococcus haemolyticus in an artificial sweat model. The results show that CI@D-MONs@CS present an excellent bacteria-killing effect and the smell of artificial sweat is greatly improved, avoiding the formation of undesirable odorant compounds from the bacteria. The obtained CI@D-MONs@CS is a potential carrier of natural fragrance or actives with dual responsive release. The application of CI@D-MONs@CS is a new and effective strategy to the axillary odor problem.

19.
Int J Biol Macromol ; 182: 1953-1965, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062162

RESUMO

A durable and reversible acid-induced discoloration azobenzene UV-curable lignin-based waterborne polyurethane polymeric dye (EDA-ULPD) is prepared from lignin, azobenzene and pentaerythritol triacrylate(PETA) by chemical modification of waterborne polyurethane. Lignin and PETA are chemically bonded to the polyurethane chain to improve thermal stability, UV resistance and color fastness, while also endow the polymeric dye with UV curing performance, which is a green and environmentally friendly fixing way. The acid-induced discoloration property of EDA-ULPD with azobenzene chromophore side chain is comparable to those of 4-ethyl-4-2,2'-dihydroxy diethylamine azobenzene (EDA). As the pH value decreases from 7 to 1, the maximum absorption peak of EDA-ULPD from 420 nm to 530 nm, and the color change from yellow to pink due to the transformation of EDA molecular structure from diazo to hydrazone. Interestingly, when EDA-ULPD is fixed to the fabric in the way of UV curing, its printed fabric exhibits the performance of high concentration acid-induced discoloration (1 mol·L-1 HCl) due to the cross-linked structure formed by EDA-ULPD. The acid-induced discoloration property of EDA-ULPD printed fabrics also presents outstanding repetitious stability. The stimulus response printed fabric with reversible high concentration acid discoloration possesses a broad application prospect in smart textiles.


Assuntos
Ácidos/química , Compostos Azo/química , Corantes/química , Lignina/química , Polímeros/química , Poliuretanos/química , Raios Ultravioleta , Água/química , Compostos Azo/síntese química , Varredura Diferencial de Calorimetria , Cor , Corantes/síntese química , Reagentes de Ligações Cruzadas/química , Peso Molecular , Polímeros/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Temperatura
20.
Ecotoxicol Environ Saf ; 214: 112078, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33676053

RESUMO

It is well known that the dairy cow production is very sensitive to environmental factors, including high temperature, high humidity and radiant heat sources. High temperature-induced heat stress is the main environmental factor that causes oxidative stress and apoptosis, which affects the development of mammary glands in dairy cows. Dihydromyricetin (DMY) is a nature flavonoid compound extracted from Ampelopsis grossedentata; it has been shown to have various pharmacological functions, such as anti-inflammation, antitumor and liver protection. The present study aims to evaluate the protective effect of DMY on heat stress-induced dairy cow mammary epithelial cells (DCMECs) apoptosis and explore the potential mechanisms. The results show that heat stress triggers heat shock response and reduces cell viability in DCMECs; pretreatment of DCMECs with DMY (25 µM) for 12 h significantly alleviates the negative effects of heat stress on cells. DMY can provide cytoprotective effects by suppressing heat stress-caused mitochondrial membrane depolarization and mitochondrial dysfunction, Bax and Caspase 3 activity, and modulation of oxidative enzymes, thereby preventing ROS production and apoptosis in DCMECs. Importantly, DMY treatment could attenuate heat stress-induced mitochondrial fragmentation through mediating the expression of mitochondrial fission and fusion-related genes, including Dynamin related protein 1 (Drp1), Mitochondrial fission 1 protein (Fis1), and Mitofusin1, 2 (Mfn1, 2). Above all, our findings demonstrate that DMY could protect DCMECs against heat stress-induced injury through preventing oxidative stress, the imbalance of mitochondrial fission and fusion, which provides useful evidence that DMY can be a promising therapeutic drug for protecting heat stress-induced mammary glands injury and mastitis.


Assuntos
Flavonóis/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Dinaminas , Células Epiteliais/efeitos dos fármacos , Feminino , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...