Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Genomics ; 113(3): 867-873, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545268

RESUMO

The efficacy of susceptible variants derived from genome-wide association studies (GWAs) optimizing discriminatory accuracy of colorectal cancer (CRC) in Chinese remains unclear. In the present validation study, we assessed 75 recently identified variants from GWAs. A risk predictive model combining 19 variants using the least absolute shrinkage and selection operator (LASSO) statistics offered certain clinical advantages. This model demonstrated an area under the receiver operating characteristic (AUC) of 0.61 during training analysis and yielded robust AUCs from 0.59 to 0.61 during validation analysis in three independent centers. The individuals carrying the highest quartile of risk score revealed over 2-fold risks of CRC (ranging from 2.12 to 2.90) compared with those who presented the lowest quartile of risk score. This genetic model offered the possibility of partitioning risk within the average risk population, which might serve as a first step toward developing individualized CRC prevention strategies in China.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Povo Asiático/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Curva ROC , Fatores de Risco
4.
Theranostics ; 8(5): 1312-1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507622

RESUMO

Rationale: The antitumor activity of high-dose ascorbate has been re-evaluated recently, but the mechanism underlying cell-specific sensitivity to ascorbate has not yet been clarified. Methods: The effects of high-dose ascorbate on gastric cancer were assessed using cancer cell lines with high and low expression of GLUT1 via flow cytometry and colony formation assays in vitro and patient-derived xenografts in vivo. Results: In this study, we demonstrated that gastric cancer cells with high GLUT1 expression were more sensitive to ascorbate treatment than cells with low GLUT1 expression. GLUT1 knockdown significantly reversed the therapeutic effects of pharmacological ascorbate, while enforced expression of GLUT1 enhanced the sensitivity to ascorbate treatment. The efficacy of pharmacological ascorbate administration in mice bearing cell line-based and patient-derived xenografts was influenced by GLUT1 protein levels. Mechanistically, ascorbate depleted intracellular glutathione, generated oxidative stress and induced DNA damage. The combination of pharmacological ascorbate with genotoxic agents, including oxaliplatin and irinotecan, synergistically inhibited gastric tumor growth in mouse models. Conclusions: The current study showed that GLUT1 expression was inversely correlated with sensitivity of gastric cancer cells to pharmacological ascorbate and suggested that GLUT1 expression in gastric cancer may serve as a marker for sensitivity to pharmacological ascorbate.


Assuntos
Ácido Ascórbico/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Oxaliplatina/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Glutationa/metabolismo , Humanos , Irinotecano/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gene ; 640: 43-50, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28962925

RESUMO

The matricellular glycoprotein products of the SPP1 and SPARC genes play critical roles in many aggressive tumor phenotypes including gastric cancer. We sought to test whether the polymorphisms of these two genes, individually or jointly, influence gastric cancer susceptibility. Nine potentially functional, tagging single nucleotide polymorphisms (tagSNPs) of SPP1 and SPARC were selected and detected using the Kompetitive Allele Specific PCR method in 301 gastric cancer cases and 1441 healthy control subjects. We found that the genotype frequencies of SPP1 rs4754 in gastric cancer were significantly different from those in controls. The rs4754 TT genotype conferred an increased risk of gastric cancer, with unadjusted and adjusted ORs ranging from 1.75 to 1.95 (all P<0.05). The assessment of the effect modifications of sex and age on the genetic effects also confirmed the statistically significant association of the rs4754 TT genotype with increased gastric cancer risk. Epistatic interactions were found between SPP1 rs4754 and SPARC rs1054204, rs3210714 and rs3549 (all P values for interaction<0.05). During the assessment of the epistatic effects between pairs of interacting factors, increased gastric cancer risk was observed in the combined presence of the SPP1 rs4754 TT genotype and the common genotypes of interacting SPARC SNPs, with ORs ranging from 3.94 to 4.41. When the genetic influence of SPP1 rs4754 TT was excluded, the genetic effects of the SPARC rs1054204, rs3210714 and rs3549 common genotypes on gastric cancer susceptibility switched from being risky to beneficial. These data reveal an association between the SPP1 rs4754 polymorphism and altered risk of gastric cancer and highlight an important role of the epistatic effects of SPP rs4754 with SPARC polymorphisms in gastric carcinogenesis. Additional functional experiments and independent large-scale studies, especially in other ethnic populations, are needed to confirm our results.


Assuntos
Epistasia Genética , Osteonectina/genética , Osteopontina/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Neoplasias Gástricas/patologia
6.
Cell Death Dis ; 8(8): e3011, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837144

RESUMO

Tumor progression and metastasis is the main cause of death in colorectal cancer (CRC). Long noncoding RNAs (lncRNAs) are critical regulators in various diseases including human cancer. In this study, we found that lncRNA XIST was overexpressed in CRC cell lines and tissues. High expression of lncRNA XIST was associated with adverse overall survival in CRC patients. Knockdown of lncRNA XIST remarkably inhibited CRC cell proliferation, invasion, epithelial-mesenchymal transition (EMT) and CRC stem cell formation in vitro as well as tumor growth and metastasis in vivo. Further study indicated that knockdown of lncRNA XIST markedly increased the expression of microRNA-200b-3p (miR-200b-3p) that has been found to be downregulated in CRC tissues and cell lines, and luciferase activity assay indicated that lncRNA XIST could bind directly with miR-200b-3p. Moreover, knockdown of lncRNA XIST significantly reduced the expression of ZEB1, which was the direct target of miR-200b-3p, and the tumor suppressive effects caused by knockdown of lncRNA XIST could be rescued by re-expression of ZEB1 in CRC cells. Overall, our study demonstrated how lncRNA XIST regulates CRC progression and metastasis by competing for miR-200b-3p to modulate the expression of ZEB1. lncRNA XIST may be used as a biomarker to predict prognosis in CRC patients.


Assuntos
Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , RNA Longo não Codificante/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
7.
Cell Death Dis ; 7(10): e2432, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27787516

RESUMO

Oesophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-associated death in the world and novel therapeutic alternatives are urgently warranted. In this study, we investigated the anti-tumour activity and underlying mechanisms of melatonin, an indoleamine compound secreted by the pineal gland as well as naturally occurring plant products, in ESCC cells and revealed that melatonin inhibited proliferation, migration, invasion and induced mitochondria-dependent apoptosis of ESCC cells in vitro and suppressed tumour growth in the subcutaneous mice model in vivo. Furthermore, after treatment with melatonin, the expressions of pMEK, pErk, pGSK3ß and pAkt were significantly suppressed. In contrast, treatment of the conventional chemotherapeutic drug fluorouracil (5-Fu) resulted in activation of Erk and Akt, which could be reversed by co-treatment with melatonin. Importantly, melatonin effectively enhanced cytotoxicity of 5-Fu to ESCC in vitro and in vivo. Together, these results suggested that inhibition of Erk and Akt pathway by melatonin have an important role in sensitization of ESCC cells to 5-Fu. Combined 5-Fu and melatonin treatment may be appreciated as a useful approach for ESCC therapy that warrants further investigation.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fluoruracila/farmacologia , Melatonina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Carcinoma de Células Escamosas do Esôfago , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco
8.
J Exp Clin Cancer Res ; 35(1): 142, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620004

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as critical regulators of tumor progression. However, the role and molecular mechanism of lncRNA XIST in gastric cancer is still unknown. METHODS: Real-time PCR analysis was performed to measure the expression levels of lncRNA XIST in gastric cancer tissues and cell lines, the correlation between lncRNA XIST expression and clinicopathological characteristics and prognosis was analyzed in gastric cancer patients. The biological function of lncRNA XIST on gastric cancer cells were determined both in vitro and in vivo. The regulating relationship between lncRNA XIST and miR-101 was investigated in gastric cancer cells. RESULTS: lncRNA XIST was significantly up-regulated in gastric cancer tissues and cell lines. Overexpression of lncRNA XIST was markedly associated with larger tumor size, lymph node invasion, distant metastasis and TNM stage in gastric cancer patients. Functionally, knockdown of lncRNA XIST exerted tumor-suppressive effects by inhibiting cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Furthermore, an inverse relationship between lncRNA XIST and miR-101 was found. Polycomb group protein enhancer of zeste homolog 2 (EZH2), a direct target of miR-101, could mediated the biological effects that lncRNA XIST exerted. CONCLUSIONS: lncRNA XIST is up-regulated and is associated with aggressive tumor phenotypes and patient survival in gastric cancer, and the newly identified lncRNA XIST/miR-101/EZH2 axis could be a potential biomarkers or therapeutic targets for gastric cancer patients.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida , Carga Tumoral
9.
Cancer Lett ; 380(1): 87-97, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27322737

RESUMO

Nafamostat mesilate is an anti-inflammatory drug that is usually used to treat pancreatitis. Recent studies show that it can suppress pancreatic cancer via inhibition of the nuclear factor κB (NF-κB) pathway. However, whether it has anti-tumor activity in some other cancer, including colorectal cancer (CRC), has not been investigated and remained unclear. Here, our study showed that nafamostat mesilate abrogated the constitutive NF-κB activation in CRC cells, which is mediated through inhibition of phosphorylation of IκBα and nuclear translocation of p65. Also, we found that nafamostat mesilate inhibited phosphorylation of Erk in CRC cells. Consistently, our study demonstrated that nafamostat mesilate inhibited the CRC cell proliferation, invasion and migration and induced mitochondria-dependent apoptosis. Furthermore, nafamostat mesilate could reverse oxaliplatin induced NF-κB and Erk activation in CRC cells, and enhance the sensitivity of CRC cells to oxaliplatin. Nafamostat mesilate combined with oxaliplatin repressed subcutaneous tumor growth and hepatic metastasis in vivo. Overall, our data suggest that nafamostat mesilate, a relatively non-toxic drug that targets NF-κB and Erk, may, in combination with oxaliplatin, represent a novel therapeutic strategy for CRC treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Guanidinas/farmacologia , Neoplasias Hepáticas/prevenção & controle , NF-kappa B/metabolismo , Compostos Organoplatínicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Benzamidinas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HCT116 , Células HT29 , Humanos , Proteínas I-kappa B/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Oxaliplatina , Fosforilação , Interferência de RNA , Fatores de Tempo , Fator de Transcrição RelA/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Pineal Res ; 60(1): 27-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26445000

RESUMO

Constitutive activation and gemcitabine induction of nuclear factor-κB (NF-κB) contribute to the aggressive behavior and chemotherapeutic resistance of pancreatic ductal adenocarcinoma (PDAC). Thus, targeting the NF-κB pathway has proven an insurmountable challenge for PDAC therapy. In this study, we investigated whether the inhibition of NF-κB signaling pathway by melatonin might lead to tumor suppression and overcome gemcitabine resistance in pancreatic tumors. Our results showed that melatonin inhibited activities of NF-κB by suppressing IκBα phosphorylation and decreased the expression of NF-κB response genes in MiaPaCa-2, AsPc-1, Panc-28 cells and gemcitabine resistance MiaPaCa-2/GR cells. Moreover, melatonin not only inhibited cell proliferation and invasion in a receptor-independent manner, but also enhanced gemcitabine cytotoxicity at pharmacologic concentrations in these PDAC cells. In vivo, the mice treated with both agents experienced a larger reduction in tumor burden than the single drug-treated groups in an orthotopic xenograft mouse model. Taken together, these results indicate that melatonin inhibits proliferation and invasion of PDAC cells and overcomes gemcitabine resistance of pancreatic tumors through NF-κB inhibition. Our findings therefore provide novel preclinical knowledge about melatonin inhibition of NF-κB in PDAC and suggest that melatonin should be investigated clinically, alone or in combination with gemcitabine for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melatonina/farmacologia , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
11.
Oncotarget ; 6(13): 10868-79, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25869101

RESUMO

microRNA-217 (miR-217) is frequently dysregulated in cancer. Here, we report that miR-217 levels were lower in tumor tissue compared with the adjacent normal tissue. Low levels of miR-217 were associated with aggressive tumor phenotypes and poor overall survival in gastric cancer patients. The ectopic expression of miR-217 inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas knockdown of endogenous miR-217 increased cell proliferation and invasion. Further experiments revealed that Polycomb group protein enhancer of zeste homolog 2 (EZH2) was a direct target of miR-217 in gastric cancer cells. Knockdown of EZH2 mimicked the tumor-suppressive effects of miR-217 in gastric cancer cells, whereas the reintroduction of EZH2 abolished its effects. Taken together, these results demonstrated that miR-217 may be used as a prognostic marker, and the newly identified miR-217-EZH2 axis may be a potential target in the development of therapeutic strategies for gastric cancer patients.


Assuntos
Movimento Celular , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Complexo Repressor Polycomb 2/genética , Prognóstico , Interferência de RNA , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...