Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(3): 47, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912930

RESUMO

KEY MESSAGE: Plastidial α-glucan phosphorylase is a key factor that cooperates with plastidial disproportionating enzyme to control short maltooligosaccharide mobilization during the initiation process of starch molecule synthesis in developing rice endosperm. Storage starch synthesis is essential for grain filling. However, little is known about how cereal endosperm controls starch synthesis initiation. One of core events for starch synthesis initiation is short maltooligosaccharide (MOS) mobilization consisting of long MOS primer production and excess MOS breakdown. By mutant analyses and biochemical investigations, we present here functional identifications of plastidial α-glucan phosphorylase (Pho1) and disproportionating enzyme (DPE1) during starch synthesis initiation in rice (Oryza sativa) endosperm. Pho1 deficiency impaired MOS mobilization, triggering short MOS accumulation and starch synthesis reduction during early seed development. The mutant seeds differed significantly in MOS level and starch content at 15 days after flowering and exhibited diverse endosperm phenotypes during mid-late seed development: ranging from pseudonormal to shrunken (Shr), severely or excessively Shr. The level of DPE1 was almost normal in the PN seeds but significantly reduced in the Shr seeds. Overexpression of DPE1 in pho1 resulted in plump seeds only. DPE1 deficiency had no obvious effects on MOS mobilization. Knockout of DPE1 in pho1 completely blocked MOS mobilization, resulting in severely and excessively Shr seeds only. These findings show that Pho1 cooperates with DPE1 to control short MOS mobilization during starch synthesis initiation in rice endosperm.


Assuntos
Endosperma , Oryza , Endosperma/genética , Endosperma/metabolismo , Oryza/metabolismo , Fosforilases/genética , Fosforilases/metabolismo , Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 191(1): 96-109, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282529

RESUMO

Degradation of starch accumulated in pollen provides energy and cellular materials for pollen germination and pollen tube elongation. Little is known about the function of cytosolic disproportionating enzyme2 (DPE2) in rice (Oryza sativa). Here, we obtained several DPE2 knockout mutant (dpe2) lines via genomic editing and found that the mutants grew and developed normally but with greatly reduced seed-setting rates. Reciprocal crosses between dpe2 and wild-type plants demonstrated that the mutant was male sterile. In vitro and in vivo examinations revealed that the pollen of the dpe2 mutant developed and matured normally but was defective in germination and elongation. DPE2 deficiency increased maltose content in pollen, whereas it reduced the levels of starch, glucose, fructose, and adenosine triphosphate (ATP). Exogenous supply of glucose or ATP to the germination medium partially rescued the pollen germination defects of dpe2. The expression of cytosolic phosphorylase2 (Pho2) increased significantly in dpe2 pollen. Knockout of Pho2 resulted in a semi-sterile phenotype. We failed to obtain homozygous dpe2 pho2 double mutant lines. Our results demonstrate that maltose catalyzed by DPE2 to glucose is the main energy source for pollen germination and pollen tube elongation, while Pho2 might partially compensate for deficiency of DPE2.


Assuntos
Arabidopsis , Oryza , Tubo Polínico/genética , Tubo Polínico/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/genética , Maltose/metabolismo , Pólen/genética , Pólen/metabolismo , Glucose/metabolismo , Amido/metabolismo , Germinação/genética
3.
PLoS One ; 12(5): e0177792, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542293

RESUMO

Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alternative food source and acts as an important commercial nut tree in China. Starch is the major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumulation of total starch and amylopectin showed a similar increasing trend during the development of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after pollination (DAP). The increase of total starch mainly results from amylopectin synthesis. Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme) showed significant increase during nut development. Two starch branching enzyme isoforms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut development. The accumulations of CmSBE transcripts and proteins in developing cotyledons were characterized. The expressions of two CmSBE genes increased from 64 DAP and reached the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influenced the amylopectin content in the developing cotyledon, which would be beneficial to chestnut germplasm selection and breeding.


Assuntos
Cotilédone/enzimologia , Cotilédone/crescimento & desenvolvimento , Fagaceae/enzimologia , Fagaceae/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amido/biossíntese , Western Blotting , China , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Isoenzimas , Espectrometria de Massas , Polinização , Reação em Cadeia da Polimerase em Tempo Real , Amido/análise
4.
Eur J Pharmacol ; 791: 185-194, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590357

RESUMO

The potential to promote neovascularization in ischemic tissues using exogenous agents is an attractive avenue for therapeutics. To identify novel pro-angiogenic small-molecule compound, we screened a series of resveratrol methylated derivatives and identified 3,3',4,4', 5,5'-hexamethoxy-trans-stilbene (3,3',4,4',5,5'-HMS) potently promotes proliferation, migration, invasion and tube formation of human umbilical vein VECs (HUVECs) in vitro. Furthermore, 3,3',4,4',5,5'-HMS accelerates neo-vessels sprouting of rat aortic rings ex vivo, and neovascularization of chick chorioallantoic membrane (CAM) and mouse matrigel plugs in vivo. Microarray analyses show that the level of early growth response 1 (EGR-1), an inducible pro-angiogenic gene regulatory factor, was upregulated. The upregulation of EGR-1 was confirmed by semiquantitative RT-PCR, quantitative real-time PCR and western blotting analyses. In addition, the levels of several pro-angiogenic factors including transforming growth factor ß1 (TGF-ß1), vascular endothelial growth factor (VEGF), nitric oxide (NO), and the activity of endothelial NO synthase (eNOS) were elevated in 3,3',4,4',5,5'-HMS-treated HUVECs. Inhibition of NO synthase by l-NAME blocked the pro-angiogenic effects of 3,3',4,4',5,5'-HMS. Our research shows that 3,3',4,4',5,5'-HMS dramatically promoted angiogenesis in vitro, ex vivo and in vivo, which might represent a novel potential agent for the development of therapeutic drugs to treat ischemic diseases.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Estilbenos/química , Estilbenos/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Resveratrol , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Acta Pharmacol Sin ; 34(9): 1174-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770989

RESUMO

AIM: Trans-3,4,5,4'-tetramethoxystilbene (DMU-212) has shown strong antiproliferative activities against a variety of cancer cells. The aim of this study was to investigate the anti-angiogenic effects of DMU-212 in vitro and in vivo. METHODS: Human umbilical vein endothelial cells (HUVECs) were used in this study. Cell viability was studied with MTT assay, and cell apoptosis was evaluated using TUNEL assay and morphological observation. The expression of the related genes and proteins was analyzed with qRT-PCR and Western blot, respectively. Angiogenesis of HUVECs were studied using cell migration and capillary-like tube formation assays in vitro, and mouse Matrigel plug assay and chick chorioallantoic membrane (CAM) assay in vivo. The tyrosine kinase activities of VEGFR1 and VEGFR2 were measured using commercial kits. RESULTS: DMU-212 (5-80 µmol/L) significantly inhibited VEGF-stimulated proliferation of HUVECs (IC50 value was approximately 20 µmol/L), and induced apoptosis. Furthermore, DMU-212 concentration-dependently inhibited VEGF-induced migration of HUVECs and capillary-like structure formation in vitro. DMU-212 also inhibited VEGF-induced generation of new vasculature in Matrigel plugs in vivo with significantly decreased area of infiltrating CD31-positive endothelial cells, and inhibited newly formed microvessels in chick CAMs. Moreover, DMU-212 concentration-dependently suppressed VEGF-induced phosphorylation of VEGFR2, and inhibited phosphorylation of multiple downstream signaling components in the VEGFR2 pathway, including c-Src, FAK, Erk1/2, Akt, mTOR, and p70S6K in HUVECs. DMU-212 had no effect on VEGF-induced phosphorylation of VEGFR1. CONCLUSION: DMU-212 is a potent inhibitor of angiogenesis that exerts anti-angiogenic activity at least in part through the VEGFR2 signaling pathway.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Estilbenos/farmacologia , Inibidores da Angiogênese/química , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Resveratrol , Estilbenos/química
6.
Apoptosis ; 17(1): 25-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21928089

RESUMO

Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1-5 µM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 µg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE(-/-) mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Células Endoteliais/citologia , Lipoproteínas LDL/toxicidade , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/administração & dosagem , Estilbenos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...