Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 99-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37368029

RESUMO

Acute respiratory distress syndrome (ARDS) is a devastating respiratory disorder, characterized by overwhelming inflammation in the alveoli without effective pharmacological treatment. We aimed to investigate the effect and mechanism of angiotensin II type 2 receptor (AT2R) agonist, Compound 21 (C21), on the lipopolysaccharide (LPS)-induced acute lung injury (ALI) model. The protective effect of C21 was evaluated via enzyme-linked immunosorbent assay (ELISA), Western blot (WB), real-time PCR, and fluorescence microscopy in LPS-challenged THP1-derived macrophages. Besides, the in vivo efficacy of C21 was assessed using cell counting, ELISA, protein quantification, hematoxylin-eosin (H&E) staining, and WB in an LPS-induced ALI mouse model. The results showed that C21 significantly inhibited the secretion of pro-inflammatory cytokines (CCL-2, IL-6), overproduction of intracellular ROS, and activation of inflammatory pathways (NF-κB/NLRP3, p38/MAPK) in THP-1 cell-derived macrophages stimulated by LPS. In in vivo study, intraperitoneal injection of C21 could reduce airway leukocytes accumulation and chemokine/cytokine (keratinocyte chemoattractant (KC), IL-6) generation, as well as alleviate diffuse alveolar damage induced by LPS. Conclusively, the AT2R agonist C21 significantly inhibited LPS-stimulated excess inflammatory responses and oxidative stress in macrophages. Meanwhile, C21 could effectively alleviate acute inflammation and tissue damage in the lungs of ALI mice challenged by LPS. The results of this study bring new hope for the early treatment of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/uso terapêutico , Interleucina-6/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Pulmão/metabolismo , Macrófagos , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico
2.
Free Radic Biol Med ; 202: 2-16, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965538

RESUMO

Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is a life-threatening illness without effective therapeutic interventions currently. Multiple lines of evidence indicated that overwhelming inflammatory responses and impaired epithelial barrier contributed to the pathogenesis of ALI/ARDS. Recently, dopamine (DA) system was identified to participate in various pulmonary diseases. Here, we discovered that dopamine D1-like receptors mainly expressed in macrophages and airway epithelial cells (AECs), which were downregulated by lipopolysaccharide (LPS) challenge in ALI mouse lung. SKF38393 (SKF) is a selective agonist for D1-like receptors and was demonstrated to inhibit excessive inflammatory responses and oxidative stress in THP-1 cell-derived macrophages and Beas-2B cells, as well as improve airway epithelial barrier dysfunction induced by LPS stimulation. Moreover, SKF administration could effectively decrease pulmonary inflammation, ameliorate tissue damage in the LPS-triggered ALI mice. The broad protective actions of SKF might be attributed to the activation of Nrf2 antioxidative system by use of the specific inhibitor, ML385. This study offers evidence of potent immunoregulatory activity of SKF in macrophages, AECs as well as ALI mouse model, which opens novel therapeutic avenues for the intervention of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Agonistas de Dopamina/efeitos adversos , Dopamina , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Macrófagos , Células Epiteliais/patologia , Síndrome do Desconforto Respiratório/patologia , Receptores de Dopamina D1 , Pulmão
3.
Front Pharmacol ; 13: 930593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386221

RESUMO

Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.

4.
Front Pharmacol ; 12: 760581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764874

RESUMO

Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia-reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.

5.
Neural Comput ; 29(11): 3078-3093, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28957025

RESUMO

Support vector machines, which maximize the margin from patterns to the separation hyperplane subject to correct classification, have received remarkable success in machine learning. Margin error bounds based on Hilbert spaces have been introduced in the literature to justify the strategy of maximizing the margin in SVM. Recently, there has been much interest in developing Banach space methods for machine learning. Large margin classification in Banach spaces is a focus of such attempts. In this letter we establish a margin error bound for the SVM on reproducing kernel Banach spaces, thus supplying statistical justification for large-margin classification in Banach spaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...