Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 308(7): 776-783, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29891193

RESUMO

Mycoplasma pneumoniae (M. pneumoniae), as an obligate parasite, has evolved a protective strategy for coping with oxidative challenges caused by M. pneumoniae itself as well as the host immune system. However, to date, few antioxidant enzymes have been identified in mycoplasmas. In this report, we identified a protein encoded by the mpn668 gene from M. pneumoniae with a putative function as an organic hydroperoxide reductase (Ohr). The results indicated that the recombinant 140 amino acid protein, designated rMPN668, displayed hydroperoxidase activity towards both organic (tert-butyl hydroperoxide) and inorganic (hydrogen peroxide) hydroperoxides in the presence of a reducing agent such as dithiothreitol. Moreover, the expression of mpn668 in M. pneumoniae is upregulated in response to oxidative stress. Additionally, homology modeling of MPN668 and a molecular dynamics simulation suggest that both Cys55 and Cys119 form part of the active site of the protein. Mutants in which Cys55 or Cys119 were replaced with a serine lack antioxidant activity, indicating that MPN668 is a Cys-based peroxidase, consistent with it representing a new member of the Ohr family.


Assuntos
Farmacorresistência Bacteriana/genética , Peróxido de Hidrogênio/farmacologia , Mycoplasma pneumoniae/genética , Peroxirredoxinas/genética , terc-Butil Hidroperóxido/farmacologia , Sequência de Aminoácidos , Regulação Bacteriana da Expressão Gênica , Simulação de Dinâmica Molecular , Mycoplasma pneumoniae/efeitos dos fármacos , Mycoplasma pneumoniae/enzimologia , Estresse Oxidativo/fisiologia , Homologia de Sequência de Aminoácidos
2.
Neurol Res ; 38(7): 647-54, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27238733

RESUMO

OBJECTIVE: To characterize the early delayed and late-delayed cognitive dysfunction induced by various doses of whole brain irradiation in young rats. METHODS: One-month-old Sprague-Dawley male rats were divided randomly into the 0 (control), 0 (anesthesia control), 2, 10, 20, and 30-Gy groups. Each group was then subdivided into 4 groups according to the experimental intervals: 1, 2, 3, and 6 months after radiation. Rats were irradiated using a 4-MeV electron beam, which was generated by a linear accelerator. Sequential behavioral tests, including open field, novel location and novel object recognition and Morris water maze were performed after radiation. Changes in gross neurological symptoms, body weight, topical skin response, and histopathology were observed. RESULTS: In the open field test, there were no radiation-induced alterations found. In the novel location and novel object recognition tests, rats of the 20-Gy group spent less time exploring the novel object and novel location 3 months after irradiation. During the place navigation test, the spatial working memory of the 30 and 20-Gy irradiated rats were impaired from 1 to 2 months after irradiation, respectively. In the spatial probe test, the 20 and 30-Gy irradiated rats spent less time in the critical region compared to control rats at 3 and 6 months post-irradiation. Morphological changes, including edema, vascular dilation, focal necrosis, demyelination, and adjacent reactive gliosis were observed in the 30-Gy irradiation group. CONCLUSION: More than 20 Gy of whole brain irradiation dose can cause significant cognitive dysfunction in young rats.


Assuntos
Encéfalo/efeitos da radiação , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Lesões Experimentais por Radiação/complicações , Análise de Variância , Animais , Peso Corporal/efeitos da radiação , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Comportamento Exploratório/efeitos da radiação , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Exame Neurológico , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos da radiação , Fatores de Tempo
3.
J Radiat Res ; 54(2): 235-42, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23135157

RESUMO

Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, i.e. DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway.


Assuntos
Encéfalo/fisiopatologia , Encéfalo/efeitos da radiação , Transtornos Cognitivos/genética , Cognição/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/metabolismo , Lesões por Radiação/genética , Animais , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Masculino , Doses de Radiação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...