Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(1): 250-264, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38147877

RESUMO

The Alchemical Transfer Method (ATM) is herein validated against the relative binding-free energies (RBFEs) of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and AToM-OpenMM software to compute the RBFEs of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical RBFE methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and postcorrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 RBFE calculations for eight protein targets and found that ATM achieves accuracy comparable to that of existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into the specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM can be applied as a production tool for RBFE predictions across a wide range of perturbation types within a unified, open-source framework.


Assuntos
Simulação de Dinâmica Molecular , Software , Termodinâmica , Ligantes , Entropia , Ligação Proteica
2.
Phys Chem Chem Phys ; 24(10): 6037-6052, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212338

RESUMO

Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
3.
J Chem Theory Comput ; 17(5): 2714-2724, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33830762

RESUMO

Grid Inhomogeneous Solvation Theory (GIST) maps out solvation thermodynamic properties on a fine meshed grid and provides a statistical mechanical formalism for thermodynamic end-state calculations. However, differences in how long-range nonbonded interactions are calculated in molecular dynamics engines and in the current implementation of GIST have prevented precise comparisons between free energies estimated using GIST and those from other free energy methods such as thermodynamic integration (TI). Here, we address this by presenting PME-GIST, a formalism by which particle mesh Ewald (PME)-based electrostatic energies and long-range Lennard-Jones (LJ) energies are decomposed and assigned to individual atoms and the corresponding voxels they occupy in a manner consistent with the GIST approach. PME-GIST yields potential energy calculations that are precisely consistent with modern simulation engines and performs these calculations at a dramatically faster speed than prior implementations. Here, we apply PME-GIST end-state analyses to 32 small molecules whose solvation free energies are close to evenly distributed from 2 kcal/mol to -17 kcal/mol and obtain solvation energies consistent with TI calculations (R2 = 0.99, mean unsigned difference 0.8 kcal/mol). We also estimate the entropy contribution from the second and higher order entropy terms that are truncated in GIST by the differences between entropies calculated in TI and GIST. With a simple correction for the high order entropy terms, PME-GIST obtains solvation free energies that are highly consistent with TI calculations (R2 = 0.99, mean unsigned difference = 0.4 kcal/mol) and experimental results (R2 = 0.88, mean unsigned difference = 1.4 kcal/mol). The precision of PME-GIST also enables us to show that the solvation free energy of small hydrophobic and hydrophilic molecules can be largely understood based on perturbations of the solvent in a region extending a few solvation shells from the solute. We have integrated PME-GIST into the open-source molecular dynamics analysis software CPPTRAJ.

4.
J Comput Aided Mol Des ; 34(12): 1219-1228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918236

RESUMO

SARS-CoV-2 recently jumped species and rapidly spread via human-to-human transmission to cause a global outbreak of COVID-19. The lack of effective vaccine combined with the severity of the disease necessitates attempts to develop small molecule drugs to combat the virus. COVID19_GIST_HSA is a freely available online repository to provide solvation thermodynamic maps of COVID-19-related protein small molecule drug targets. Grid inhomogeneous solvation theory maps were generated using AmberTools cpptraj-GIST, 3D reference interaction site model maps were created with AmberTools rism3d.snglpnt and hydration site analysis maps were created using SSTMap code. The resultant data can be applied to drug design efforts: scoring solvent displacement for docking, rational lead modification, prioritization of ligand- and protein- based pharmacophore elements, and creation of water-based pharmacophores. Herein, we demonstrate the use of the solvation thermodynamic mapping data. It is hoped that this freely provided data will aid in small molecule drug discovery efforts to defeat SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Modelos Químicos , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Termodinâmica , Proteínas não Estruturais Virais/efeitos dos fármacos , Antivirais/química , Betacoronavirus/química , Sítios de Ligação , COVID-19 , Domínio Catalítico , Humanos , Ligantes , Modelos Moleculares , Conformação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química , Água , Tratamento Farmacológico da COVID-19
5.
ChemRxiv ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32511289

RESUMO

SARS-CoV-2 recently jumped species and rapidly spread via human-to-human transmission to cause a global outbreak of COVID-19. The lack of effective vaccine combined with the severity of the disease necessitates attempts to develop small molecule drugs to combat the virus. COVID19_GIST_HSA is a freely available online repository to provide solvation thermodynamic maps of COVID-19-related protein small molecule drug targets. Grid Inhomogeneous Solvation Theory maps were generated using AmberTools cpptraj-GIST and Hydration Site Analysis maps were created using SSTmap code. The resultant data can be applied to drug design efforts: scoring solvent displacement for docking, rational lead modification, prioritization of ligand- and protein- based pharmacophore elements, and creation of water-based pharmacophores. Herein, we demonstrate the use of the solvation thermodynamic mapping data. It is hoped that this freely provided data will aid in small molecule drug discovery efforts to defeat SARS-CoV-2.

6.
PLoS One ; 14(8): e0220113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31430292

RESUMO

Recently much effort has been invested in using convolutional neural network (CNN) models trained on 3D structural images of protein-ligand complexes to distinguish binding from non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray structures and binding affinity data has required the use of constructed datasets for the training and evaluation of CNN molecular recognition models. Here, we outline various sources of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUD-E). We have constructed and performed tests to investigate whether CNN models developed using DUD-E are properly learning the underlying physics of molecular recognition, as intended, or are instead learning biases inherent in the dataset itself. We find that superior enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalization of the pattern of protein-ligand interactions. Comparing additional deep learning models trained on PDBbind datasets, we found that their enrichment performances using DUD-E are not superior to the performance of the docking program AutoDock Vina. Together, these results suggest that biases that could be present in constructed datasets should be thoroughly evaluated before applying them to machine learning based methodology development.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Aprendizado Profundo , Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/química , Ligantes , Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo , Interface Usuário-Computador
7.
Clin Cancer Res ; 23(8): 2038-2049, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27683179

RESUMO

Purpose: Antiproliferative, antiviral, and immunomodulatory activities of endogenous type I IFNs (IFN1) prompt the design of recombinant IFN1 for therapeutic purposes. However, most of the designed IFNs exhibited suboptimal therapeutic efficacies against solid tumors. Here, we report evaluation of the in vitro and in vivo antitumorigenic activities of a novel recombinant IFN termed sIFN-I.Experimental Design: We compared primary and tertiary structures of sIFN-I with its parental human IFNα-2b, as well as affinities of these ligands for IFN1 receptor chains and pharmacokinetics. These IFN1 species were also compared for their ability to induce JAK-STAT signaling and expression of the IFN1-stimulated genes and to elicit antitumorigenic effects. Effects of sIFN-I on tumor angiogenesis and immune infiltration were also tested in transplanted and genetically engineered immunocompetent mouse models.Results: sIFN-I displayed greater affinity for IFNAR1 (over IFNAR2) chain of the IFN1 receptor and elicited a greater extent of IFN1 signaling and expression of IFN-inducible genes in human cells. Unlike IFNα-2b, sIFN-I induced JAK-STAT signaling in mouse cells and exhibited an extended half-life in mice. Treatment with sIFN-I inhibited intratumoral angiogenesis, increased CD8+ T-cell infiltration, and robustly suppressed growth of transplantable and genetically engineered tumors in immunodeficient and immunocompetent mice.Conclusions: These findings define sIFN-I as a novel recombinant IFN1 with potent preclinical antitumorigenic effects against solid tumor, thereby prompting the assessment of sIFN-I clinical efficacy in humans. Clin Cancer Res; 23(8); 2038-49. ©2016 AACR.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Interferon-alfa/química , Interferon-alfa/farmacologia , Animais , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Interferon alfa-2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Hum Cell ; 27(4): 162-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24771354

RESUMO

Hepatocellular carcinoma (HCC) has particularly high incidence rate in Asia and its resistance to the chemotherapeutic drugs and cell death make it intractable. Vaccinia virus (VV) is a potential vehicle and has been widely used in cancer therapy. SMAC/DIABLO is a critical factor in activating caspases and eliminating inhibition of IAPs when the programmed cell death is promoted. In this study, we constructed a tumor-targeted vaccinia virus carrying SMAC/DIABLO gene that was knocked in the region of viral thymidine kinase gene (VV-SMAC). Our results showed that VV-SMAC efficiently infected and destroyed HCC cells via triggering both caspase-dependent apoptosis and necroptosis with depletion of IAPs. Furthermore, ripoptosome, a prerequisite complex of necroptosis, was assembled and induced by VV-SMAC. In addition, the combination of VV-SMAC and vinblastine represented a synergistic effect on HCC cells. In summary, our data suggest that VV-SMAC is a potential candidate and combination of VV-SMAC and vinblastine may provide a new avenue in treatment of HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Proteínas Mitocondriais , Timidina Quinase/farmacologia , Vaccinia virus/enzimologia , Vaccinia virus/genética , Vimblastina/farmacologia , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Necrose , Timidina Quinase/genética , Timidina Quinase/uso terapêutico , Vimblastina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...