Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 154: 26-33, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31022637

RESUMO

Rogressive deconstruction of filament actin (F-actin) in hippocampal neurons in the epileptic brain have been associated with epileptogenesis. Previous clinical studies suggest that glucocorticoids treatment plays beneficial roles in refractory epilepsy. Glucocorticoids treatment affects dendritic spine morphology by regulating local glucocorticoid receptors and F-actin cytoskeleton dynamics. However, how glucocorticoids regulate epileptogenesis by controlling F-actin cytoskeleton is not clear yet. Here we study the function of glucocorticoids in epileptogenesis by examining F-actin abundance, hippocampal neuron number, and synaptic markers in pilocarpine-induced epileptic mice in the presence or absence of dexamethasone (DEX) treatment. We found that spontaneous seizure duration was significantly reduced; F-actin damage in hippocampal subfields was remarkably attenuated; loss of pyramidal cells was dramatically decreased; more intact synaptic structures indicated by pre- and postsynaptic markers were preserved in multiple hippocampal regions after DEX treatment. However, the number of ZNT3 positive particles in the molecular layer in the hippocampus of pilocarpine epileptic mice was not altered after DEX treatment. Although not sufficient to cease epileptogenesis, our results suggest that dexamethasone treatment ameliorates the damage of epileptic brain by stabilizing F-actin cytoskeleton in the pilocarpine epileptic mice.


Assuntos
Citoesqueleto de Actina/metabolismo , Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Epilepsia/metabolismo , Hipocampo/metabolismo , Pilocarpina/toxicidade , Citoesqueleto de Actina/química , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/química , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR
2.
J Chem Neuroanat ; 98: 17-26, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30872184

RESUMO

Disruption of microtubule cytoskeleton plays an important role during the evolution of brain damage after transient cerebral ischemia. However, it is still unclear whether microtubule-stabilizing drugs such as epothilone D (EpoD) have a neuroprotective action against the ischemia-induced brain injury. This study examined the effects of pre- and postischemic treatment with different doses of EpoD on the microtubule damage and the delayed neuronal death in the hippocampal CA1 subfield on day 2 following reperfusion after 13-min global cerebral ischemia. Our results showed that systemic treatment with 0.5 mg/kg EpoD only slightly alleviated the microtubule disruption and the CA1 neuronal death, while treatment with 3.0 mg/kg EpoD was not only ineffective against the CA1 neuronal death, but also produced additional damage in the dentate gyrus in some ischemic rats. Since the pyramidal cells in the CA1 subfield and the granule neurons in the dentate gyrus are known to be equipped with dynamically different microtubule systems, this finding indicates that the effects of microtubule-disrupting drugs may be unpredictably complicated in the central nervous system.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Epotilonas/farmacologia , Ataque Isquêmico Transitório/patologia , Células Piramidais/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Animais , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Piramidais/patologia , Ratos , Ratos Wistar
3.
Epilepsy Res ; 140: 138-147, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358156

RESUMO

After status epilepticus (SE), actin cytoskeleton (F-actin) becomes progressively deconstructed in the hippocampus, which is consistent with the delayed pyramidal cell death in both time course and spatial distribution. A variety of experiments show that calcineurin inhibitors such as FK506 are able to inhibit the SE-induced actin depolymerization. However, it is still unclear what changes happen to the F-actin in the epileptic brain after FK506 treatment. A pilocarpine model of SE in mice was used to examine the effects of FK506 on the F-actin in the hippocampal neurons. The post SE (PSE) mice with or without FK506 treatment were monitored consecutively for 14 days to examine the frequency and duration of spontaneous seizures. The effects of FK506 on the activity of cofilin and actin dynamics were assessed at 7 and 14 d PSE by western blots. The organization of F-actin, neuronal cell death, and glial reactions were investigated by phalloidin staining, histological and immunocytochemical staining, respectively. As compared to the PSE + vehicle mice, FK506 treatment significantly decreased the frequency and duration of spontaneous seizures. Relative to the PSE + vehicle mice, western blots detected a partial restoration of phosphorylated cofilin and a significant increase of F/G ratio in the hippocampus after FK506 treatment. In the PSE + vehicle mice, almost no F-actin puncta were left in the CA1 and CA3 subfields at 7 and 14 d PSE. FK506-treated PSE mice showed a similar decrease of F-actin, but the extent of damage was significantly ameliorated. Consistently, the surviving neurons became significantly increased in number after FK506 treatment, relative to the PSE + vehicle groups. After FK506 treatment, microglial reaction was partially inhibited, but the expression of GFAP was not significantly changed, compared to the PSE + vehicle mice. The results suggest that post-epileptic treatment with FK506 ameliorated, but could not stop the deconstruction of F-actin or the delayed neuronal loss in the PSE mice.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Inibidores de Calcineurina/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estado Epiléptico/tratamento farmacológico , Tacrolimo/farmacologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Anticonvulsivantes/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Pilocarpina , Distribuição Aleatória , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
4.
Tissue Cell ; 49(2 Pt B): 336-344, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28187870

RESUMO

In the central canal, F-actin is predominantly localized in the apical region, forming a ring-like structure around the circumference of the lumen. However, an exception is found in the medulla oblongata, where the apical F-actin becomes interrupted in the ventral aspect of the canal. To clarify the precise localization of F-actin, the fluorescence signals for F-actin were converted to the peroxidase/DAB reaction products in this study by a phalloidin-based ultrastructural technique, which demonstrated that F-actin is located mainly in the microvilli and terminal webs in the ependymocytes. It is because the ventrally oriented ependymocytes do not possess well-developed microvilli or terminal web that led to a discontinuous labeling of F-actin in the medullary canal. Since spinal motions can change the shape and size of the central canal, we next examined the cytoskeletons in the medullary canal in both rats and monkeys, because these two kinds of animals show different kinematics at the atlanto-occipital articulation. Our results first demonstrated that the apical F-actin in the medullary canal is differently organized in the animals with different head-neck kinemics, which suggests that the mechanic stretching of spinal motions is capable of inducing F-actin reorganization and the subsequent cell-shape changes in the central canal.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Bulbo/ultraestrutura , Canal Medular/ultraestrutura , Citoesqueleto de Actina/metabolismo , Actinas/isolamento & purificação , Animais , Fenômenos Biomecânicos , Haplorrinos , Bulbo/metabolismo , Ratos , Canal Medular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...